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1. Introduction

This paper studies a symmetric two-player game of strategic experimenta-

tion, as in Keller, Rady and Cripps (2005), where both players have private

information. The players face a two-arm bandit problem, and the payoffs to

each of these arms is common to the players. I model private information by

allowing the players to be uncertain about the payoffs from both arms, but ac-

tive learning to be possible only on one of the arms, the learning arm. That

is, if a player uses this arm, it generates public lump-sum payoffs via a Poisson

process, where the arrival rate is positive only in the good state. A player can

also use the no-learning arm, which generates a constant flow payoff, which is

observed by the players only in the distant future. However, each player has

private information about the no-learning arm’s payoff, and the players’ com-

bined information resolves the uncertainty. Because a player’s experimentation

strategy depends on his private information, and may reveal it, a problem of

strategic experimentation with two-sided signaling arises.

I find that there exists a Markov perfect equilibrium (MPE) when the play-

ers experiment more than in the full-information benchmark (i.e., the situation

where the players’ private information is made public). This increased exper-

imentation happens because of two reasons. Firstly, the use of the learning

arm signals a lower flow payoff in the no-learning arm, which can encourage the

other player to experiment more. Secondly, neither player knows the no-learning

arm’s payoff, so they may experiment more than necessary. For example, one

possible situation is that players will stop experimenting if they know the true

flow payoff of the no-learning arm. However, because private information exists,

both players’ beliefs about the flow payoff may be lower than the truth, lead-

ing to continued experimentation. Indeed, one may have over-experimentation,

where the players experiment more than a utilitarian social planner would under

complete information.

Despite the possibility of over-experimentation due to two-sided private in-

formation, the ex ante welfare is larger than under the full-information bench-
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mark.2 While over-experimentation can reduce welfare in some states, increased

experimentation can mitigate the free-riding problem, resulting in increased ex

ante welfare. Furthermore, the interim expected payoffs of the players, after

both of them learn their private information, always exceed the payoffs in the

full-information case. In contrast, in Dong (2021), the informed player of a

certain type may be hurt by his private information.

The modeling innovation in my paper is the introduction of a risky no-

learning arm. For example, consider passive investment in a financial asset,

such as shares in a long-term investment project whose outcome will be known

only in the distant future. Because the project has been undertaken and the

purchase of an asset is only a transfer in ownership, such an investment does

not result in any learning, but investors may have private information on the

future prospects of the investment project.3

Related literature.

Bolton and Harris (1999) first introduced the strategic experimentation prob-

lem and characterized the unique symmetric MPE. Keller, Rady and Cripps

(2005) introduced the exponential bandit model and constructed a unique sym-

metric MPE with under-experimentation due to free riding, as well as study-

ing asymmetric equilibria. Keller and Rady (2010) generalized this model to

the case of inconclusive good-news information, and Keller and Rady (2015)

studied the bad-news case. These papers discussed the encouragement and

free-riding effects in strategic experimentation and found that MPEs feature

under-experimentation relative to the collaborative benchmark.

The classic analysis of strategic experimentation assumes that all informa-

tion is public; however, some authors allow private information of players in

strategic experimentation problems. Bonatti and Hörner (2011) discussed the

effort invested in experimentation when it is unobserved by other players. Hei-

2Ex ante welfare is the expected payoff of a player before observing her private information.
3In my formal model, I assume that the sum of the players’ information resolves all uncer-

tainty regarding the no-learning arm, but this assumption is inessential.
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dhues, Rady and Strack (2015) assumed unobserved realization of payoffs on

the risky arm in the two-arm bandit model. The paper most closely related to

mine is Dong (2021). The author allows one of the two players in an exponential

bandit model to have an extra private signal about the risky arm’s state. She

found that one-sided private information mitigates the under-experimentation

problem without the risk of over-experimentation, which is the novel feature of

her paper.

Additionally, my work is also related to other dynamic models with two-

sided private information. For example, in the bargaining model with two-sided

uncertainty by Cramton (1992), two players may waste time bargaining with

each other only to realize that a transaction cannot be made, because the seller

values the item more than the buyer does. Cho (1990) also studied a two-

sided uncertainty model, but he assumed a finite horizon and one-sided offer

bargaining. He also found a delay in the agreement between the two sides.

Cronshaw and Alm (1995) studied the model of the government and a taxpayer,

where both sides have private information. They found that the government

using a concealment policy led to less compliance. Other similar results are

presented in Kahn and Huberman (1988) and Banks (1993). In contrast with

much of this work, in my model the overall effect of two-sided uncertainty is

beneficial, because it improves the ex ante welfare by mitigating the free-riding

problem.

The rest of this paper is organized as follows. Section 2 sets out the model.

Section 3 presents the main results regarding Markov perfect equilibria, and

Section 4, the welfare results. Section 5 discusses multiplicity of equilibria, and

Section 6 concludes the paper.

2. Model

Time is continuous, and the horizon is infinite. Two players (player 1 and 2)

have access to replicas of a two-arm bandit. Each player has one unit of perfectly

divisible resource per unit of time to split between two arms. Furthermore,
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players discount future payoffs by the factor r.

2.1. Two-arm bandit

The learning arm’s payoff depends on the unobserved state θ, which players

do not observe. The learning arm generates a payoff of h ∈ R+ according to a

Poisson process with the arrival rate λ when the state is θ = 1. No payoff is

generated when the state is θ = 0, so a perfect good-news model is achieved.

The payoff arrivals of the learning arms are public; therefore, a player can free

ride the other one’s experimentation.

The no-learning arm generates flow payoff s = s1+s2, which is not observed

either. Here s1, s2 ∈ {s, s} are random variables drawn independently at the

beginning of the game, and both have the probability of q0 ∈ (0, 1) being s, and

the probability of 1 − q0 being s (0 < s < s). Player i observes only si, which

is his private type. I also assume that the flow payoff s is not observed until

date T , which is distant in the future, so players do not learn by using this arm.

Instead, a player can infer the other one’s private information from actions in

equilibrium. Moreover, I assume 2s < λh, so when θ = 1, players prefer the

learning arm, regardless of the realizations of s1 and s2.

2.2. Strategies and equilibrium

At the beginning, nature decides s1 and s2, and player i observes the real-

ization of si. At date t, the public information includes the past actions of the

two players and the past payoff outcomes on the learning arms. The space of

the past actions is [0, 1][0,t), and the space of the past outcomes is {0, 1}[0,t),

where 1 represents the payoff arrival. At date t player i decides the resource

kt ∈ [0, 1] on the learning arm based on the public information and his private

type. Player i’s strategy at date t is represented by

kit : {s, s} × ([0, 1][0,t))2 × ({0, 1}[0,t))2 → [0, 1],

which is the resource on the learning arm.
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Following the literature, I focus on the Markov perfect equilibrium (MPE).

At date t, the sufficient state variables of player i consist of pt ∈ [0, 1], the

belief of the learning arm’s state being θ = 1; q1t ∈ [0, 1], player 2’s belief of

player 1’s type being s; q2t ∈ [0, 1], player 1’s belief of player 2’s type being s;

and si ∈ {s, s}, player i’s private type. Variables pt, q
1
t , and q2t are common

knowledge, because the past actions and past payoff outcomes on the learning

arms are public information. Therefore, the sufficient state space for player i is

[0, 1]3 × {s, s}. The sufficient state variables for the two players are different,

because the players can observe only their own type.

I define the pure Markov strategies for players following Dong (2021). Con-

sider two players: player i and player j. Let si be player i’s private type, qit be

player j’s belief about player i’s type, and qjt be player i’s belief about player j’s

type. Player i’s strategy is ki(p, qj ; pt, q
i
t, q

j
t , si), which says that when the state

is (pt, q
i
t, q

j
t ) at some point, type si plays according to ki(p, qj ; pt, q

i
t, q

j
t , si) for

any p ≤ pt, and qj is type si’s belief about the other player’s type.
4 The strategy

is Markov if any history causing the state (pt, q
i
t, q

j
t ) has the same action. For ex-

ample, ∀pt, p′t s.t. pt > p′t, starting from state (pt, q
i
t, q

j
t ), if the two players play

according to ki(p, qj ; pt, q
i
t, q

j
t , si) and kj(p, qi; pt, q

j
t , q

i
t, sj) and the state reaches

(p′t, q
i
t
′, qjt

′), then the two players’ strategies satisfy ki(p, qj ; pt, q
i
t, q

j
t , si) = ki(p, qj ; p′t, q

i
t
′, qjt

′, si)

and kj(p, qi; pt, q
j
t , q

i
t, sj) = kj(p, qi; p′t, q

j
t
′, qit

′, sj) for p ≤ p′t. For simplicity, I

use kt as the action at date t when there is no confusion. Finally, following the

literature, I require the strategy to be left continuous and piecewise Lipschitz

continuous in pt, to avoid further problems (Keller and Rady, 2010).

Besides the pure strategies, I also allow for a specific kind of mixed strate-

gies: players can randomly stop experimentation and move to the no-learning

arm (i.e., mixing stopping experimentation and continuing experimentation at

a date). More precisely, I assume players can choose the arrival rates of the

Poisson process for the time they stop experimentation. This mixed strategy is

4A simpler version of Markov strategies is ki(pt, qit, q
j
t ; si), but the player’s action is affected

by qit at the last moment, and vice versa, which can cause problems.

6



also equivalent to having a random variable drawn from [0, 1] at the beginning

of the game and having the player choose the stopping time according to the

realization of the random variable.

An MPE consists of a strategy function ki(p, qj ; pt, q
i
t, q

j
t , si) and belief up-

dating µ(kj , pt, q
i
t, q

j
t ), which is the new qit when the state is (pt, q

i
t, q

j
t ) and

player i observes an action of kj from the other player. At each date, the

strategy ki(p, qj ; pt, q
i
t, q

j
t , si) maximizes the expected payoff of player i,

E
[ ∫ ∞

t

re−rs[(1− k)(s1 + s2) + kλhpt]dt
]
,

given the other player’s strategy and belief updating. Additionally, the belief

updating should satisfy Bayes’ rule when possible.

Another restriction I put on the equilibria is that after both players reveal

their private information,5 they will play the unique symmetric equilibrium

presented in Keller, Rady and Cripps (2005), referred to as the KRC strategy

henceforth.

2.3. State variables

Variable pt is the belief about the state of the learning arm, and its updating

is the same as in Keller, Rady and Cripps (2005). If there is payoff arrival on

the learning arm, then the two players know θ = 1. If there is no payoff arrival,

the update of pt follows the law of motion:

dpt
dt

= −Ktλpt(1− pt),

where Kt is the two players’ total resource at date t on the learning arms. The

belief of the learning arm pt decreases with time.

The updates of q1t and q2t depend on the strategies in equilibrium. If player

i of type s and type s choose the same action (i.e., pooling), then qit does

not change. Otherwise, it updates according to the Bayes rule. For example,

suppose in the whole history, type s chooses kt = 1 and type s jumps to kt = 0

5In this case, the model becomes the same as in Keller, Rady and Cripps (2005).
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from 1 at an arrival rate et; then the belief of type s at time t, seeing only k = 1

in the past, is

qit =
q0

q0 + (1− q0)e
−

∫ t
m=0

emdm
.

Off-path beliefs will follow the belief updating µ(kj , pt, q
i
t, q

j
t ) in equilibrium.

3. Equilibria Results

3.1. The cooperative solution and benchmark

If I assume the two players share the private information when working

cooperatively, the model degenerates into the model in Keller, Rady and Cripps

(2005) (the KRC model). As a result, the cooperative solution of my model is

the same as that of the KRC model. The players will invest all resources into the

learning arm when pt > pc(s), and into the no-learning arm when pt ≤ pc(s),

where the threshold pc(s) is a function of the realization of the flow payoff in

the no-learning arm:

pc(s) =
rs

(λh− s)(r + 2λ) + rs
.

My model nests on the KRC model so that it will be the benchmark. Specif-

ically, I use the unique symmetric MPE in the KRC model as the bench-

mark, because I also look at a symmetric MPE. Free riding leads to under-

experimentation in this solution. Figure 1 illustrates the KRC strategy6 and

the cooperative threshold pc(s).

3.2. Equilibrium with over-experimentation

With s large enough, s small enough, and q0 large enough, I construct an

equilibrium with possible over-experimentation. Here s and s should be large

and small enough, respectively, so that at pt = pc(s + s), the KRC strategy of

s = 2s is kt = 1; at pt = pc(2s), the KRC strategy of s = s+ s is kt = 1 (Figure

2).

6The strategy is presented as a function of pt.
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Clearly, if the learning arm’s payoff arrives, the players know θ = 1 and will

put all their resources into the learning arm. Next, I will discuss the equilibrium

strategies without payoff arrival.

This equilibrium is characterized by two cutoff points, pc(s+s) and ps, where

pc(s+ s) < ps < pc(2s). The following strategies are conditional on no payment

arrival on the learning arm and one player’s beliefs about the other player’s type

(q1t , q
2
t ) staying on path (discussed later).

Suppose both beliefs (q1t , q
2
t ) stay on path:

When pt > ps, both types experiment with full resources, so qit, q
j
t will stay

at q0. This is the pooling stage.

When pc(s + s) < pt ≤ ps, type s experiments with resource k = 1 while

type s randomly stops; the two players’ strategies are partially separating. More

specifically, during the time interval (t, t+ dt), type s stops experimenting with

probability, etdt
7 i.e., the stopping of experimentation happens with an arrival

rate of et, which may change with time (as detailed in the next subsection). If

one player stops experimentation, the other player knows that the first player’s

type is s; if experimentation does not stop, qjt increases with time (it also de-

creases in pt, because pt decreases with time). This is the partial separating

stage.

When pt ≤ pc(s + s), the two players’ strategies will be fully separating.

Type s plays the KRC strategy of 2s if (qit, q
j
t ) = (1, 1), which is the on-path

belief. I will show later that this is the only possible on-path case. This stage is

fully separating, because type s will reveal himself before pt falls below pc(s+s).

For the off-path cases, if (qit, q
j
t ) = (1, 0), player i of type s plays k = 0, which is

the KRC strategy of s = s+ s; if (qit, q
j
t ), where qit < 1, player i of type s plays

k = 1 to reveal himself; if (qit, q
j
t ), where qit = 1, 0 < qjt < 1, player i of type

s plays k = 1 to keep qit = 1 and wait for the other player to disclose his type.

Type s does not experiment in this stage. The fully separating of the players’

strategies can also be explained as follows: type s always plays k = 0 and type

7Here (dt)n with a power no less than 2 is omitted.
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Figure 3: On-path strategies

s plays k = 1 when his type is not known by the other player in this stage.8

This is the full separating stage. Figure 3 summarizes these strategies.

It is possible to have the on-path beliefs qit when there is no stopping of the

experimentation or no payoff arrival on the learning arm as a function of pt by

the Bayes rule:

qi(pt) =


q0, pt > ps

q0

q0 + (1− q0)e
−

∫ t
m=0

emdm
, pc(s+ s) < pt ≤ ps

1, pt ≤ pc(s+ s)

which is also presented in Figure 4. When player i stops in the partial revealing

stage, qit jumps to 0. I will show in the next subsection that qi(pt) reaches 1

when pt arrives at pc(s+ s).

As for off-path beliefs, I will assign qit = 0 for any kt smaller than the strategy

of type s.

After one player reveals his private signal, the problem becomes a one-sided

private information problem similar to that in Dong (2021). A detailed con-

struction of the equilibrium of this subgame is presented in section 3.4 and

Appendix A.2.

Finally, after both players reveal their private signal, the problem becomes

the same as in Keller, Rady and Cripps (2005), and I will assume the players

play the unique symmetric MPE (the KRC strategies).

In this equilibrium, over-experimentation may happen. When the true state

8When pt is very small, a player does not experiment regardless of the other player’s type,

so there is no need to distinguish this situation from the full-separation case.
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is s = 2s, the outcome of this equilibrium is as follows:9

Suppose the initial prior about the learning arm is p0 > ps. At the beginning,

both players play kt = 1. As pt goes down and reaches ps, both players (type

s) randomly stop experimentation at an arrival rate et. With probability 1,

the stopping of experimentation happens before pt reaches pc(s + s). Then,

because pt ≤ ps < pc(2s), both players use the no-learning arm according to the

equilibrium in the one-sided private information problem (see section 3.4).

Both players will experiment at pt < pc(2s) because ps < pc(2s). However,

working cooperatively, they will stop experimentation at pc(2s). There is over-

experimentation because of two reasons. The first is that experimenting signals

a lower opportunity cost of experimentation, leading to more experimentation

from the other player. This encouragement effect mitigates the free-riding prob-

lem and causes more experimentation but does not lead to over-experimentation.

The second reason is the ignorance towards the true s. In this example, no player

knows the true state s = 2s. Instead, each player believes that the other player

might be type s. Since both players think the opportunity cost of experimenting

might be low, they will experiment more than needed. They know they have

9I will discuss the outcome when no payoff arrives on the learning arm, because the result

is trivial with payoff arrival.

12



over-experimentation if the state is 2s, but the expected gain from other possible

realizations of s can cover the loss from over-experimentation. Therefore, both

players continue to experiment, even if they might pass the efficient threshold.

In this equilibrium, selfishness will cause more experimentation, but only with

ignorance toward the true s will the experimentation level exceed the efficient

level.

The equilibrium above is summarized in the following proposition.

Proposition 1. If there exist c1(r, λ, h), c2(r, λ, h) s.t. for any s ∈ (c1(r, λ, h),
λh
2 )

and s ∈ (0, c2(r, λ, h)), ∃ q(s, s, r, l, h) < 1 s.t. with any q0 > q(s, s, r, λ, h) and

p0 > ps,
10 it is possible to construct an equilibrium with over-experimentation

featured by cutoff points ps and pc(s+ s):

(1) Type s plays kt = 1 if pt > pc(s+ s); it plays the KRC strategy of the true

s if pt ≤ pc(s+ s).

(2) Type s plays kt = 1 if pt > ps; it plays kt = 0 if pt ≤ pc(s + s); and it

randomly stops to the no-learning arm if ps < pt ≤ pc(s+ s).

(3) The on-path belief when the stopping of experimentation has not happened

is qi(pt).

(4) The off-path belief with a deviation kt smaller than the strategy of type s is

0.

3.3. Construction of the partial separating stage

In this section, I discuss the stage of pt ∈ (pc(s+ s), ps]. In this stage, type

s uses the learning arm with his full resource, and type s randomly stops at an

arrival rate of et.

If a player is type s and deviates to any k < 1, then the other player will think

that he is type s and thus experiment less because of the higher opportunity

cost of experimentation. As a result, this deviation hurts type s.

Because the type s player randomly stops, he needs to be indifferent between

continuing on kt = 1 and revealing his type by kt = 0. Suppose that type s’s

10As discussed in section 3.3, ps depends on q0.
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expected payoff with no one revealing his type in this stage is u(pt, qi(pt)); then

it should satisfy the following Hamilton–Jacobi–Bellman equation:

u(pt, qi(pt)) =pλh+
1

r

{
(1− qi(pt))et[2s− u(pt, qi(pt))]

+ [2pλ(λh− u(pt, qi(pt))) +
du(pt, qi(pt))

dpt

dpt
dt

]
}
.

(1)

Here (1− qi(pt))etdt is the probability of the other player being type s and

revealing his type by kt = 0 during the interval dt.11

Furthermore, the expected payoff of type s should equal the expected payoff

of revealing his type by k = 0, because a player with type s is indifferent between

mimicking type s and revealing his type in this stage. I will make ps at least

small enough so that the KRC strategy of s = s + s is k = 0 at ps, which

can be achieved by assuming q0 is large enough (discussed later). Under this

assumption, type s’s expected payoff of the partial separating stage will be

u(pt, qi(pt)) = qi(pt)(s+ s) + (1− qi(pt))2s (2)

and thus
du(pt, qi(pt))

dpt
= (s− s)q′i(pt). (3)

The above equations hold because when pt ≤ ps and one player reveals

himself as type s, the other player will reveal his type in the next moment. See

section 3.4 and Appendix A.2 for the detailed reason.

Notice that qi(pt) =
q0

q0+(1−q0)e
−

∫ t
m=0 emdm

, so

et =
q′i(pt)

qi(pt)(1− qi(pt))

dpt
dt

. (4)

By plugging (2), (3), and (4) into (1) we get

2s+ qi(pt)(s− s) = pλh+
1

r

{
[p2λ(λh− 2s− qi(pt)(s− s))

}
, (5)

which can give us the following:

qi(pt) =
2sr − [(r + 2λ)λh− 4λs]pt

(s− s)(r + 2λpt)
, pc(s+ s) < pt ≤ ps. (6)

11Here dt to the power higher than 1 is omitted.
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With the expression of qi(.) of pt ∈ (pc(s+ s), ps], we can get the expression

of et (or e(pt)) by (4).

Moreover, qi(pt) is decreasing in pt, thus qit, qjt are increasing in t. And

at pt = pc(s + s), qi(pt) = 1, so the stopping of experimentation happens

before pt reaches pc(s + s) with probability 1. In other words, if no stopping

of experimentation is observed before pt arrives at pc(s + s), a player is sure

that the other player is type s. Once the stopping happens, the game becomes

a one-sided private information game, which is discussed in section 3.4.

Cutoff point ps is also decided by (6). It solves qi(pt) = q0. We have

qi(pc(s + s)) = 1, qi(pc(2s)) = 0, q0 ∈ (0, 1), and qi(p) decreases in p, so ps is

a uniquely determined value between pc(s + s) and pc(2s). Assuming q0 large

enough can ensure that the partial separating stage happens late enough12 to

prevent players from deviating.

As for the intuition of having the partial separating stage, recall that for

type s, when the other player is type s, the free-riding problem is mitigated and

experimenting is beneficial; when the other player is type s, then continuing

to experiment can result in over-experimentation, and the player incurs a loss.

When pt is high, for type s, the gain of experimenting is high enough to cover

the loss of possible over-experimentation. However, as pt goes down with time,

the loss from over-experimentation becomes relatively large compared to the

gain from other possibilities. When the gain can no longer cover the loss, type

s begins to stop experimentation randomly. When this happens, the game

proceeds as a one-sided private information problem. When the stopping of

experimentation does not happen, qit and qjt increase with time. Though the

loss becomes relatively larger as time t increases, the probability of having a gain

by experimenting (qit) also increases. As a result, it can keep type s indifferent

between mimicking type s by kt = 1 and revealing his type by kt = 0.

12We at least need ps small enough so that the KRC strategy of s = s + s is k = 0 at ps,

as mentioned before. The sufficient condition for q0 to ensure the equilibrium is discussed in

Appendix A.1.
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3.4. One-sided private information problem

The one-sided private information problem after one player reveals his type

is similar to the model in Dong (2021), so in this section I will omit the detailed

algebra and focus on the main construction of the equilibrium where type s

reveals his type. According to the equilibrium construction above, only type s

can reveal his type before the full separating stage (i.e., qit cannot jump to 1

when pt > pc(s + s)), so I discuss only the equilibrium after type s reveals his

type.

If q0 is large enough, there can be an equilibrium of only two stages, a

pooling stage and a full separating stage, with the cutoff point pc(2s). In this

equilibrium, players achieves the efficient level of experimentation when the

realization of s is 2s.

The detailed construction of this subgame equilibrium is in Appendix A.2.

The construction shows that the full separating stage happens after pt reaches

pc(2s). However, in the equilibrium of the two-sided private information prob-

lem, revealing one’s type (type s moves to the no-learning arm) happens only

when pt ≤ ps, where ps ∈ (pc(s+ s), pc(2s)). As a result, in the outcome of the

two-sided private information problem, when type s reveals himself, the full sep-

aration has happened in the continuing one-sided private information problem,

so the other player also reveals his type.

Although there can be a multiplicity problem in this one-sided private in-

formation problem, I will assume that the players play the equilibrium above,

where type s keeps his private information unrevealed as long as possible.

4. Welfare

4.1. Ex ante welfare

I first discuss the ex ante welfare of the equilibrium. The ex ante welfare is

the expected total payoff of the two players before knowing their own types.
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Before knowing his own type and that of the other player, one player’s

expected payoff is

EW (p0, q0) = q0W (p0, q0; s) + (1− q0)W (p0, q0; s),

where W (p, q; s) is type s’s initial expected payoff in my equilibrium, with p0 =

p, q0 = q. The two players have the same ex ante expected payoff, so the ex

ante welfare is

2EW (p0, q0) = 2q0W (p0, q0; s) + 2(1− q0)W (p0, q0; s).

I regard this ex ante welfare as the total welfare of my model and compare

it to the ex ante welfare of the full-information benchmark, the KRC model.

In the benchmark, denote the player’s initial expected payoff as Wb(p0; s) when

the initial belief about the state of the learning arm is p0 and the flow payoff of

the no-learning arm is s. Then compare the ex ante welfare of my model to

EWb(p0, q0) = 2
[
q20Wb(p0, 2s) + 2q0(1− q0)Wb(p0, s+ s) + (1− q0)

2Wb(p0, 2s)
]
.

Proposition 2. Two-sided private information improves the ex ante welfare

compared to the full-information benchmark if the equilibrium in Proposition 1

exists.

Figure 5 illustrates the ex ante welfare difference between the full-information

benchmark and the two-sided private information model (EWb(p0, q0)−2EW (p0, q0))

under different initial beliefs (different p0). When ps < p0 < 1, the two-sided

private information always increases the ex ante payoff. Obviously, at p0 = 1,

players play k = 1 in both models, so they have the same ex ante welfare.

Though two-sided private information leads to the possibility of over-experimentation,

the ex ante welfare is increased compared to the full-information benchmark.

The intuition of this increase is similar to the reason for over-experimentation.

There is a possible welfare loss compared to the benchmark when over-experimentation

happens. However, in other realizations of s where over-experimentation does

not happen, there is a payoff gain: more experimentation can mitigate the
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Figure 5: Welfare difference between the full-information benchmark and the two-sided private

information model under different initial beliefs, p0 > ps

under-experimentation problem caused by free riding. When the researcher is

considering the ex ante welfare, the welfare gain can cover the welfare loss.

As shown in Figure 5, there is a hump in EWb(p0, q0) − 2EW (p0, q0). The

difference between my model and the benchmark comes from how players ex-

periment under different private information conditions on the no-learning arm.

However, the difference caused by the two-sided private information will be over-

whelmed by the similarity if p0 is very high or very low. Under my assumption,

the players prefer the learning arm if its state is θ = 1, and the no-learning arm

if the learning arm’s state is θ = 0. When p0 is high, the learning arm is very at-

tractive, and the players will use it in both models. So, the difference caused by

the different private information in the no-learning arm is overwhelmed by the

similarity. The same happens for very low p0. Therefore, the most significant

difference for p0 is in between the two cases.

4.2. Interim payoffs

In this part, I discuss the interim payoffs, specifically, the expected payoff of

players at the beginning of the game but after knowing their own types. Clearly,

W (p0, q0; s) is the interim payoff of type s. Again, W (p0, q0; s) will be compared

to the full-information benchmark, q0Wb(p0, s+ s) + (1− q0)Wb(p0, s+ s).
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As shown in Figure 6, for most p0 values, my model has a higher interim

payoff than the full-information benchmark for both types. For type s, hav-

ing two-sided private information mitigates the under-experimentation problem

without incurring over-experimentation. For type s, having two-sided private

information leads to more experimentation, and over-experimentation is possi-

ble. However, because it is an equilibrium and type s does not reveal his type

in equilibrium, he prefers the current equilibrium payoff to the full-information

benchmark. Therefore, players do not want to have full information even after

knowing their own types.

Consider the situation in which one player has a chance of verifiably commu-

nicating his private information to the other player, and the problem becomes

one-sided. Type s does not want to communicate his private information. Even

without this communicating chance, type s can reveal his type by choosing

kt < 1. Since it is an equilibrium strategy that type s mimics type s, type s

does not want to use the communicating chance. It is not possible to get the

same result for type s in the same way, because type s does not have the chance

to reveal his type in the equilibrium.

Compare the equilibrium result of the two-sided private information problem

and the one-sided private information problem for type s. If both players are

type s, then in both problems, the equilibrium result is that the players play

the KRC strategy of s = 2s.

If the other player is type s, the two problems have different experimentation

levels. When q0 is high at the beginning of the game, then the one-sided private

information problem after type s communicates his private type can support an

equilibrium with only two stages – pooling and full separating – and the cutoff

point is pc(s + s). So, in the one-sided problem, a player of type s achieves

efficient experimentation when the other player is type s. However, in the two-

sided private information problem, the players may stop experimentation before

pc(s + s). Therefore, the one-sided problem gives a better equilibrium payoff,

and type s wants to communicate if he has the chance.
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(a) Type s

(b) Type s

Figure 6: Interim payoff difference between the model and the full-information benchmark,

p0 > ps
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5. Discussion

5.1. Multiplicity problem

As a signaling game, we will face the multiplicity problem. Similar problems

also happen in Dong (2021). There are multiple equilibria for the game with

two-sided private information and for the continuation game with one-sided

private information (after one player reveals his private information). Even

after both sides reveal their private information and the game degenerates to

the full-information benchmark, there are multiple MPEs, but I focus on the

symmetric MPE here.

To deal with the multiplicity problem, the first restriction (restriction 1)

I use is the symmetric requirement. As discussed in Keller, Rady and Cripps

(2005), requiring two players to play the same strategy will resolve the multi-

plicity problem of the continuation game after both sides reveal their private

information. This restriction does not apply to the continuation game where

only one player reveals his private signal, because the two players are asymmetric

here. For the original game with two-sided private information, the symmetric

requirement is that the two players should use the same strategy if they are of

the same type.

I place the second restriction (restriction 2) on the one-sided private infor-

mation problem after one player reveals his private type. The one-sided private

information problem also suffers from the multiplicity problem. Following a

similar idea as in Dong (2021), I assume that when the players are facing the

one-sided private information problem, they play the equilibrium where the

private information is held for the longest time (the equilibrium introduced in

section 3.4).

The third restriction (restriction 3) I use is on the off-path beliefs. If the

strategy of type s is k(s), then any action ki < k(s) will lead to qit = 0 and

any action ki > k(s) will lead to qit = 1 if qit is not 0 before the jump. That is,

any deviation from the on-path strategy has a deterministic effect on qit. But

for qit = 0, deviating to k > k(s) does not change qit anymore. This restriction
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has a similar intuition as the D1 criterion but is stronger. For type s, the

opportunity cost of experimenting is small, so he tends to experiment more. On

the contrary, type s tends to experiment less because of a higher opportunity

cost. So, a larger action is more likely to be used by type s, and I assume this

consideration has a deterministic effect on the beliefs about the private type.

This restriction also means that if there is full separation, the strategy of type s

must be higher than that of type s. Besides, this restriction also says there are

only two ways to change qjt . The first way is to let it jump to 1 or 0, which is

achieved by deviating for sure. The second way is to let it gradually change by

mixing the on-path strategy and the deviation.13 Then we have the following

proposition.

Proposition 3. Under the three restrictions above and the same parameter con-

ditions as in Proposition 1, the on-path belief path (q1t , q
2
t ) in a MPE is unique.

The following is a heuristic proof idea of the proposition; the complete proof

is relegated to Appendix A.4.

Firstly, if pt ≤ pc(s + s), type s does not want to experiment, because his

belief about the learning arm pt is already below the efficient cutoffs, no matter

if the other player is type s or s. But type s can experiment with his full resource

if the other player is also type s, so there will be separating when pt ≤ pc(s+s).

Secondly, if type s is indifferent between mimicking type s and revealing his

type, the on-path qt must satisfy qi(pt) when pc(s+ s) < pt ≤ ps. Furthermore,

type s cannot be indifferent between mimicking type s and revealing his type

at pt > pc(s+ s) in equilibrium.

Thirdly, qt = 1 or 0 cannot be the on-path belief when pc(s+ s) < pt ≤ ps.

If there is full separation, then type s will mimic type s if the other player

reveals himself as type s. By doing so, type s can get more experimentation

when pt > pc(s+ s).

13Of course, gradual change happens when no deviation happens, and qjt jumps to 0 or 1

when deviation happens.
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Fourthly, pooling cannot happen when pt ≤ ps. If the two types pool on

k < 1, type s will deviate up to reveal his type and then get a better payoff, as

discussed in section 4.2. If the two types pool on k = 1 for pt < ps, the beliefs

qit and qjt have to stay above q0 for any pt > ps, which is a contradiction.

Finally, for pt > ps, q
i
t and qjt should remain unchanged at q0 because there

is no partial revealing from type s.

Consequently, the beliefs qit and qjt in any MPE should be the same as in

the constructed equilibrium.

5.2. More players

A natural question is what would happen if there were more than two players.

For example, in the setup with three players, I assume that the no-learning arm

generates flow payoff s = s1+s2+s3, where s1, s2, s3 ∈ {s, s}. The distributions

of the three variables are q0 ◦ s+ (1− q0) ◦ s. All other setups are the same as

the original model.

Having more players leads to more free riding, encouragement, and private

information.14 As discussed, the free-riding problem makes players experiment

less; players may want to experiment more to hide their private information

from others to encourage them to experiment; the ignorance towards the true

state can make players experiment beyond the efficient boundary.

More players do not change the result qualitatively. Take three players as

an example; when s is large enough and s is small enough, in equilibrium,

we still have three stages if q0 and p0 are large enough: the pooling stage,

the partial separating stage, and the full separating stage. Two cutoffs govern

this equilibrium: pc(s + 2s) and p3s. For pt > p3s, both types play k = 1; for

pc(s+2s) < pt ≤ p3s, type s plays k = 1, and type s randomly stops from k = 1

to k = 0; for pt ≤ pc(s + 2s), type s plays k = 0, and type s plays the KRC

strategy of the true s. And when pt ∈ (pc(s + 2s), p3s], the belief of the other

14This is because each player will have his own private information.
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player being type s seeing no stopping happens is

q3i (pt) =
3sr − pt[λ(r + 3λ)− 9λs]

(s− s)(2r + 6λpt)
,

while the belief jumps to 0 when stopping happens. And p3s solves q3i (pt) = q0.

The full separating happens earlier than in the original model (pc(s+2s) >

pc(s+ s)) because the flow payoff of the no-learning arm – the opportunity cost

of experimentation – is larger than in the two-player case. If I make the highest

and lowest realization of s the same in the three-player and two-player cases,

i.e., s1, s2, s3 ∈ { 2
3s,

2
3s}, in the three-player case the full separation happens

later than in the original model (pc(
2
3s +

4
3s) < pc(s + s)). So, after the effect

of the changing flow payoff of the no-learning arm is removed, the overall effect

of increasing the number of players to three encourages experimentation. Thus,

the pro-experimentation effects of encouragement and ignorance overwhelm the

deteriorating free-riding problem.

Furthermore, with three players, both the realizations s = 3s and s = s+2s

can have over-experimentation. Though there are more possibilities of over-

experimentation with three players, welfare results are still similar to the two-

player case: the ex ante welfare is increased because of the private information.

The benefit of mitigating the free-riding problem covers the loss from possible

over-experimentation.

6. Conclusion

This paper departs from the two-arm bandit problem of Keller, Rady and

Cripps (2005) by changing the previous safe arm to the no-learning arm. The

no-learning arm generates an unobserved constant flow payoff about which both

players have private information. The two-sided private information in the no-

learning arm increases the experimentation level compared to the benchmark

without private information. A player experiments more because he (1) has

the incentive to hide his private information and encourage the other player to

experiment more and (2) does not know the true flow payoff of the no-learning
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arm. Only the second force can lead to over-experimentation. For example,

players should stop experimentation early when the true flow payoff is high.

However, in my model, both players may think the flow payoff is possibly low

and thus continue to experiment beyond the efficient threshold. The two-sided

private information can increase the experimentation level and even overturn

the under-experimentation problem caused by information free riding in Keller,

Rady and Cripps (2005).

Though the possibility of over-experimentation exists, if the ex ante welfare

of two players is considered, two-sided private information is still beneficial.

More experimentation in my model has the benefit of mitigating the free-riding

problem and the harm from possible over-experimentation. The former benefit

can counterbalance the latter harm and increase the ex ante welfare of players.

The current model evaluates what happens when the backup of a risky in-

vestment is not completely safe, by assuming a no-learning arm. Based on a

similar idea, possible extensions may lay in other unsafe backup options. For

example, people may hire an expert to manage their money as a backup for

investing in a new and risky project, which leads to a delegating problem. Mod-

eling these backups may capture richer situations.
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Appendix A. Appendix

Appendix A.1. Equilibrium results

In this part I verify that there is no profitable deviation for any player in all

three stages, which is the proof for Proposition 1.

Appendix A.1.1. The full separating stage (pt ≤ pc(s+ s))

Since the belief about the learning arm is already below the efficient cutoff

point of s = s+ s, type s will play k = 0, no matter which type the other player

is. So type s does not want to deviate.

For type s, since the game starts with p0 > ps, when pt enters the full sepa-

rating stage, the true types of players will be revealed. There is no uncertainty
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in the no-learning arm now, so type s does not want to deviate from the KRC

strategy of the true s.

If qit ∈ (0, 1), as shown in the strategy, type s will play k = 1 for an instance.

After that moment, the types are revealed and then players follow the KRC

strategy of the true s. Clearly, he will not deviate after the type is revealed.

And he will also not deviate from a moment of k = 1, since that will make the

other player think that he is type s and play k = 0 after that moment. This will

be no better than the on-path payoff: if the other player is type s, the deviation

hurts him since it reduces experimentation; if the other player is type s, the

deviation gives the same payoff as on-path strategies (in both cases, they play

k = 0 afterwards).

Appendix A.1.2. The partial separating stage (pc(s+ s) < pt ≤ ps)

As discussed in section 3.3, type s does not want to deviate since he is

indifferent between mimicking type s and revealing himself.

For type s, if he deviates from k = 1, qit will jump to 0. Since we have

assumed that q0 is large enough so that the KRC strategy of s = s+ s is k = 0

at ps, the other player plays k = 0 then. But stay on-path will make the other

player experiments more – type s plays k = 1, and type s mixes between k = 1

and k = 0. This is better for type s since pt > pc(s+ s).

Appendix A.1.3. The pooling stage (pt > ps)

Firstly, for type s, deviating from k = 1 makes qit jumps to 0 and makes the

other player experiment less, so he does not want to deviate.

Then we consider type s. Firstly let us suppose that the cutoff point where

the KRC strategy of s = s + s changes to 0 is p̂1, the cutoff point where the

KRC strategy of s = s+ s reach 1 is p̂2.

(1) ps < pt ≤ p̂1

Since ps < p̂1, the payoff after revealing type s is q0(s+ s) + (1− q0)(2s) at

ps, and the right derivative of the payoff after revealing at ps is 0.

Since before ps, two players play k = 1, so the on-path payoff u(p) of type s
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should satisfy the following ODE.

2λp(1− p)u′(p) + (r + 2λp)u(p) = (r + 2λ)λhp (A.1)

Recall our equation (2), type s’s payoff at ps will be

u(ps) = q0(s+ s) + (1− q0)2s (A.2)

Plug (A.2) into (A.1) with p = ps, and use equation (5) at pt = ps, we get

2λps(1− ps)u
′(ps) = 0

where u′(ps) is the right derivative, since (A.1) satisfied only for p > ps.

So, the right derivative of type s’s on-path payoff is also 0. Then we know

that type s does not want to stop when ps < pt ≤ p̂1: the on-path payoff u(pt)

is increasing when pt ∈ (ps, p̂1]; the deviation payoff is constant at q0(s + s) +

(1− q0)2s when pt ∈ (ps, p̂1]; the on-path payoff u(pt) is equal to the deviation

payoff at pt = ps.

(2) p̂1 < pt ≤ pc(2s)]
15.

When both players choose k = 1 for pt > ps and k = 0 for pt ≤ ps,

let the payoff type s gets be vl(pt) if the other one is type s, be vh(pt) if

the other one is type s. Then type s’s payoff in the pooling stage will be

v(pt) = q0vl(pt) + (1− q0)vh(pt)
16.

Type s’s payoff of revealing himself is q0wl(pt)+(1−q0)wh(pt), where wl(pt)

is the payoff in the KRC model with s = s + s, wh(pt) is the efficient payoff

with s = 2s, i.e. the payoff when both players play k = 0 for pt ≤ pc(2s) and

play k = 1 for pt > pc(2s)
17.

To make revealing himself not profitable for type s, we need

q0vl(pt)+(1−qt)vh(pt) ≥ q0wl(pt)+(1−q0)wh(pt) ⇔
q0

1− q0
≥ wh(pt)− vh(pt)

vl(pt)− wl(pt)

15Recall that according to our assumption on s and s, we have p̂1 < p̂2 < pc(2s).
16The on-path payoff at pt > ps in my equilibrium satisfies the ODE 2λp(1− p)v′(p)+ (r+

2λp)v(p) = (r+2λ)λhp, and has payoff of q0(s+s)+(1−q0)2s at the point ps, so the on-path

payoff will be the same as the payoff if two players choose k = 1 for pt > ps and k = 0 for

pt ≤ ps.
17According to the constructed equilibrium in the one-sided private information problem.
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notice that vl(pt)− wl(pt) > 0 since pc(s+ s) < ps < p̂1.

Clearly, wh(pt)−vh(pt) is bounded above, since wh(pt) and vh(pt) are surely

between 0 and λh.

Now we only consider q0 large enough such that ps ≤ p̂1 − ϵ, where ϵ is a

small positive number. Notice that vl(pt) changes with ps.

Lemma 1. For any ps ∈ [pc(s+s), p̂1−ϵ] and pt ∈ (p̂1, pc(2s)], vl(pt)−wl(pt) is

bounded away from 0, i.e. ∃ τ > 0 s.t. vl(pt)−wl(pt) > τ , ∀ps ∈ [pc(s+s), p̂1−ϵ],

pt ∈ (p̂1, pc(2s)].

Proof. Firstly, Let consider pt ∈ (p̂1, p̂2].

As discussed in Keller, Rady and Cripps (2005), wl(p) satisfies the ODE

λp(1− p)w′
l(p) + λpwl(p) = (r + λ)λhp− r(s+ s)

and thus

wl(p) = s+ s+ (
r

λ
+ 1)(λh− (s+ s)) +

r(s+ s)(1− p)

λ
ln

1− p

p
+ C1(1− p)

where C1 is a constant depending on the cutoff point p̂1 and the payoff at that

point s+ s.

Take derivative twice we get

w′′
l (p) =

r(s+ s)

λ

1

(1− p)p2
> 0

Also we have vl(p) satisfies the ODE

2λp(1− p)v′l(p) + (r + 2λp)vl(p) = (r + 2λ)λhp

with the initial condition vl(ps) = s+ s.

Consequently,

vl(p) = λhp+ C2(1− p)(
1− p

p
)

r
2λ

where C2 = (s+ s− λhps)
1

1−ps
( ps

1−ps
)

r
2λ .

Then we have

v′′l (p)

w′′
l (p)

=
C2

2(s+ s)
(1 +

r

2λ
)(
1− p

p
)

r
2λ > 0
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which is decreasing in p.

So, v′′l (p)− w′′
l (p) can cross 0 at most once (from above to below).

Notice that v′l(p̂1) > 0 and w′
l(p̂1) = 0, we have v′l(p̂1) − w′

l(p̂1) > 0. Then

v′l(p)−w′
l(p) can cross 0 at most once (from above to below) on (p̂1, p̂2]. So the

minimum of vl(p)− wl(p) on (p̂1, p̂2] is reached at either p̂1 or p̂2.

Notice that as ps increase, wl(p) stays unchanged and vl(p) decreases (since

ps > pc(s + s)). Then we only need to check vl(p) − wl(p) at ps = p̂1 − ϵ to

explore the minimum. It is easy to see that when ps = p̂1 − ϵ, vl(p) − wl(p) is

positive at both p = p̂1 or p̂2 (it will be a positive number depending on ϵ).

Then I consider pt ∈ (p̂2, pc(2s)].

In this interval, both vl(p) and wl(p) satisfy the ODE

2λp(1− p)y′(p) + (r + 2λp)y(p) = (r + 2λ)λhp

and thus

wl(p) = λhp+ (wl(p̂2)− λhp̂2)
1

1− p̂2
(

p̂2
1− p̂2

)
r
2λ (1− p)(

1− p

p
)

r
2λ

vl(p) = λhp+ (vl(p̂2)− λhp̂2)
1

1− p̂2
(

p̂2
1− p̂2

)
r
2λ (1− p)(

1− p

p
)

r
2λ

At pt = p̂2, we have vl(p̂2) > wl(p̂2) already, so

v′l(p)− w′
l(p) < 0, p ∈ (p̂2, pc(2s)]

Consequently, the minimum among pt ∈ (p̂2, pc(2s)] is reached at pc(2s).

Again, since vl(p) decreases in ps, the minimum in pt ∈ (p̂2, pc(2s)] and ps ∈

[pc(s+ s), p̂1 − ϵ] is reached at ps = p̂2 − ϵ and pt = pc(2s).

Notice that vl(p) − wl(p) is decreasing in p and vl(1) − wl(1) = 0, so the

minimum which is reached at ps = p̂2 − ϵ and pt = pc(2s) is positive, which

depends on ϵ.

Combining two positive lower bounds for pt ∈ (p̂1, p̂2] and pt ∈ (p̂2, pc(2s)],

we can conclude that there will be a positive τ such that vl(p)− wl(p) ≥ τ > 0

for any ps ∈ [pc(s+ s), p̂1 − ϵ], pt ∈ (p̂1, pc(2s)].
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With the lemma above, we can see that wh(pt)−vh(pt)
vl(pt)−wl(pt)

is bounded above

for any ps ∈ [pc(s + s), p̂1 − ϵ], pt ∈ (p̂1, pc(2s)]
18. So we know that for q0

larger than a threshold, q0
1−q0

≥ wh(pt)−vh(pt)
vl(pt)−wl(pt)

with any ps ∈ [pc(s + s), p̂1 − ϵ],

pt ∈ (p̂1, pc(2s)].

Notice that to ensure ps ≤ p̂1 − ϵ, we need q0 to be larger than another

threshold. Consequently, if q0 is larger than both two thresholds discussed

above, we have that ps ∈ [pc(s+ s), p̂1 − ϵ] and type s does not want to deviate

to reveal himself when pt ∈ (p̂1, pc(2s)].

(3) pt > pc(2s)

Similar to above, both the on-path payoff v(p) and the revealing payoff w(p)

satisfy the ODE

2λp(1− p)y′(p) + (r + 2λp)y(p) = (r + 2λ)λhp

since two players use k = 1 for pt > pc(2s) both before and after revealing.

Then we have

w(p) = λhp+ (w(pc(2s))− λhpc(2s))
1

1− pc(2s)
(

pc(2s)

1− pc(2s)
)

r
2λ (1− p)(

1− p

p
)

r
2λ

v(p) = λhp+ (v(pc(2s))− λhpc(2s))
1

1− pc(2s)
(

pc(2s)

1− pc(2s)
)

r
2λ (1− p)(

1− p

p
)

r
2λ

As discussed in part (2), with q0 large enough, we have v(p) ≥ w(p) with

p ∈ (p̂2, pc(2s)], so v(pc(2s)) ≥ w(pc(2s)). Then we can conclude that v(p) ≥

w(p) for p > pc(2s), and thus deviating to revealing himself is not profitable for

type s.

Appendix A.2. One-sided private information problem

Appendix A.2.1. Construction of the equilibrium

In this part I provide a detailed construction of the equilibrium for the one-

sided private information problem after type s revealing himself, i.e. the one

who has revealed himself is of type s.

18Notice that vl(pt)− wl(pt) is also bounded above
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When pt ≤ pc(2s), the player who has not revealed himself (who knows the

true realization of s) plays the KRC strategy of s = s + s if he is type s, and

plays k = 0 if he is type s. For the player who has revealed himself (who is still

unsure about the other player’s type), he plays the KRC strategy of s = s + s

if qit = 1, and plays k = 019 if qit = 0.

When pt > pc(2s), the player who has not revealed himself plays k = 1 for

both types. The player who has revealed himself plays k = 1 as well.

Clearly, pt > pc(2s) is the pooling stage and pt ≤ pc(2s) is the full separating

stage. The on-path qt
20 is q0 with pt > pc(2s), and 1 or 0 with pt ≤ pc(2s).

As for the off-path belief, any k smaller than the strategy of type s makes

qit jump to 0.

Appendix A.2.2. Proof of the equilibrium

(1) pt ≤ pc(2s)

For the player who has not revealed himself, if he is type s, he does not

want to deviate to k = 1, because pt is already below the efficient cutoff point

for s = 2s, and thus making both players experiment more is not beneficial

for him. If he is type s, he does not want to deviate down, since that reduces

both players’ experimentation21. And he does not want to deviate up either.

Since he already has the full reputation of type s (qt = 1), deviating up does

not affect qt. Then since KRC strategy is an equilibrium in the full information

benchmark, type s does not deviate up due to no effect on qt.

For the player who has revealed himself, his action change has no effect on

qit. Since now he knows the true realization of s and the KRC strategies is an

equilibrium in the full information benchmark, this player has no incentive to

deviate.

(2) pt > pc(2s)

19This is the KRC strategy of s = 2s at pt ≤ pc(2s)
20I remove the superscript since there is only one belief about the other player’s type in the

one-sided private information problem.
21Obviously, when on-path strategy is k > 0 for type s, pt > p̂1.

32



For the player who has not revealed himself, no matter what his type is, if

he deviates to k < 1, qt jumps to 0 and the other player experiment less. It will

not be profitable since pt > pc(2s) > pc(s+ s), which means pt is still above the

efficient cutoff point, no matter s = 2s or s+ s.

For the player who has revealed himself, his action has no effect on qi.

His on-path payoff u(p) should satisfy the following Hamilton–Jacobi–Bellman

equation

u(p)− Es = {λhp−Es+
1

r
[λp(λh− u(p))− λp(1− p)u′(p)]}

+
1

r
[λp(λh− u(p))− λp(1− p)u′(p)]

where Es = q0(s+ s) + (1− q0)2s.

Using the results of Keller, Rady and Cripps (2005), to make k = 1 the

optimal strategy of the player, we need

S(p) = u(p)− 2Es+ λhp ≥ 0 (A.3)

Actually, u(p) can be written as u(p) = q0ul(p) + (1 − q0)uh(p), where

ul(p) and uh(p) are the payoff if the other player is type s and s respectively,

conditional on on-path strategies. Then we have two Hamilton–Jacobi–Bellman

equations

ul(p)− (s+ s) = {λhp−(s+ s) +
1

r
[λp(λh− ul(p))− λp(1− p)u′

l(p)]}

+
1

r
[λp(λh− ul(p))− λp(1− p)u′

l(p)]

uh(p)− 2s = {λhp−2s+
1

r
[λp(λh− uh(p))− λp(1− p)u′

h(p)]}

+
1

r
[λp(λh− uh(p))− λp(1− p)u′

h(p)]

Let

A(p) = ul(p)− 2(s+ s) + λhp

B(p) = uh(p)− 4s+ λhp

Clearly, S(p) = q0A(p) + (1− q0)B(p).
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Notice that if the other player is type s, the on-path outcome is exactly the

same as the outcome of the symmetric MPE in the KRC model with s = s+ s.

So for pt > pc(2s)
22

A(p) = ul(p)− 2(s+ s) + λhp > 0

It is easy to see A(p) is increasing in p for p > p̂2, so A(p) > A(pc(2s)).

Recall our assumption on s and s s.t. p̂2 < pc(2s) and the results in Keller,

Rady and Cripps (2005), we have A(p̂2) = 0 and A(pc(2s)) > 0. So, fixing s

and s, for p > pc(2s),
−B(p)
A(p) will be bounded above, where the positive upper

bound is determined by s and s.

Then we conclude that by choosing q0 large enough (the threshold related to

s and s), we can have inequality (A.3) satisfied for pt > pc(2s). In other words,

the player who has revealed himself does not deviate from k = 1 at pt > pc(2s).

Similarly, we can have q0 large enough such that the one-sided private in-

formation problem where type s reveals himself has an equilibrium with the

pooling stage and the full separating stage, cut by point pc(s+ s).

Appendix A.3. Welfare results

This section provides a proof for Proposition 2.

As discussed in the main context, I will compare the ex-ante welfare of my

model

2EW (p0, q0) = 2q0W (p0, q0; s) + 2(1− q0)W (p0, q0; s)

to the ex-ante welfare of the full information benchmark

EWb(p0, q0) = 2
[
q20Wb(p0, 2s) + 2q0(1− q0)Wb(p0, s+ s) + (1− q0)

2Wb(p0, 2s)
]

which is the same as the KRC model.

22We have put assumptions on s and s so that the KRC strategy of s = s + s is k = 1 at

pc(2s), i.e. p̂2 < pc(2s).
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It easy to see that

2EW (p0, q0)−EWb(p0, q0) =

2
{
q0

[
W (p0, q0; s)− q0Wb(p0, 2s)− (1− q0)Wb(p0, s+ s)

]
+(1− q0)

[
W (p0, q0; s)− q0Wb(p0, s+ s)− (1− q0)Wb(p0, 2s)

]}
Firstly, for type s, according to the equilibrium construction, if the other

player is type s, the on-path strategies give the same payoff as in the KRC

model of s = 2s: Wb(p0, 2s). If the other player is s, the on-path strategy is

both players playing k = 1 or mixing both players playing k = 1 and k = 0,

which gives more experimentation than the under-experimentation situation

in the KRC model of s = s + s, without experimenting beyond the efficient

threshold pc(s + s). Consequently, the on-path strategies give a higher payoff

than the payoff in the KRC model of s = s+ s: Wb(p0, s+ s). So we have

W (p0, q0; s)− q0Wb(p0, 2s)− (1− q0)Wb(p0, s+ s) ≥ 0

For type s, in Appendix A.1, we have shown that the on-path payoff is

no worse than the payoff after he revealing himself and entering a one-sided

private information problem. Recall that in the equilibrium of the one-sided

private information problem, if the other player is type s, the on-path strategies

give the same payoff as the KRC model of s = s+ s; if the other player is type

s, the on-path strategies are efficient in experimentation. So, the payoff from

revealing and entering the one-sided private information problem is larger than

q0Wb(p0, s+ s) + (1− q0)Wb(p0, 2s). Then we have

W (p0, q0; s)− q0Wb(p0, s+ s)− (1− q0)Wb(p0, 2s) ≥ 0

Then we conclude

2EW (p0, q0)− EWb(p0, q0) ≥ 0

It is straightforward to check that the equality only happens at p0 = 1.

The proof above also shows that the interim expected payoff of a player after

knowing his type exceeds the full information benchmark.
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Appendix A.4. Multiplicity

This section provides a proof for Proposition 3.

Recall restriction 1, since players start at the same q0, q
i
t and qjt will only be

different when someone reveals his type. So I will use qt instead of qit, q
j
t when

there is no confusion.

Borrowing some ideas from Dong (2021), I prove the solution in a backward

induction manner.

(1) pt ≤ pc(s+ s)

Suppose now we have 0 < qit, q
j
t < 1, since the type is not revealed yet,

on-path strategies of both types must be the same with a positive probability.

Let this possibly partial pooling strategy be kp.

If kp > 0, once any player reveals himself, type s will be better off since

pt < pc(s + s) and both players turn to k = 0 after revealing (according to

restriction 2). So, type s wants to deviate to k = 0 and reveal himself23.

If kp = 0, type s can deviate to k = 1 for a moment to reveal himself and

enters an one-sided private information problem. As discussed in Appendix

A.2, he gets the KRC payoff of s = 2s if the other player is type s; gets the

efficient payoff if the other player is type s (restriction 2). Consequently, the

deviation will be better than keeping at k = 0.

As a result, we need to have full separating in this part.

(2) pc(s+ s) < pt ≤ ps

We have the following lemmas, if we have the same parameter conditions as

in Proposition 1.

Lemma 2. With 3 restrictions, at pt > pc(s + s), type s cannot do random

revealing in an equilibrium, i.e. he cannot mix pooling with type s and revealing

himself.

23If he continues, he either continues with both players playing k > 0 or end up with

someone revealing himself and k = 0 (this happens if revealing is possible in equilibrium).

This continuation payoff will be worse than directly deviating, since keeping both players at

k > 0 is worse than both players at k = 0 for type s, pt ≤ pc(s+ s).
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Proof. Suppose type s do random revealing in an equilibrium. Since here

type s can reveal himself, then the partial pooling strategy needs to be k < 1

according to restriction 3.

When pt > pc(s + s), type s can deviate up to k = 1 to reveal himself (re-

striction 3) and enter an one-sided private information problem. Then according

to restriction 2, the other player will choose k = 1 until pt = pc(s + s). After

pt < pc(s + s), the other player plays the KRC strategy of s = 2s if he is type

s, and plays k = 0 if he is type s. This will be better for type s than keeping at

k < 1, no matter what the other player’s type is. Consequently, type s cannot

be indifferent between revealing himself and keeping at k < 124.

Lemma 3. With 3 restrictions, when type s is doing random revealing at pt ∈

(pc(s+ s), ps], we must have qt = qi(pt).

Proof. Since type s cannot do random revealing here, the only possibility here

is that both types will choose some k0 > 0, while type s has some rate of

deviating down to reveal himself. Similar to Section 3.3, type s’s payoff u(p)

satisfy the ODE

u(p)− Es =k0(λhp− Es) +
1

r

{
(1− q(p))et[2s− u(p)]

+ [2k0pλ(λh− u(p)) +
du(p)

dp

dp

dt
]
} (A.4)

where Es = q(p)(s+ s) + (1− q(p))2s, et is the arrival rate of revealing.

Since we need indifferent between continuing and revealing, so u(p) = Es.

Then combine u(p) = Es, (4) and (A.4) we get

Es− λhp =
1

r
(2pλ(λh− Es)) ⇒ q(p) =

2sr − p[λh(2λ+ r)− 4λs]

(s− s)(2pλ+ r)
= qi(p)

Lemma 4. With 3 restrictions, when pt ∈ (pc(s+s), ps], full separation cannot

happen in an equilibrium.

24Actually, two strategies give the same payoff at pc(s + s), since full separating happens

after that, as discussed above.
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Proof. Suppose full separation happens in an equilibrium and type s’s on-

path strategy is k′, type s’s on-path strategy is k′′. According to restriction 3,

k′′ > k′. Then what type s will do is that he chooses k′′ for a moment and wait

for the other player reveals himself. After that, type s continues at k′′ until

pc(s+ s) if the other player is type s; chooses k = 0 (and thus reveals himself as

type s) if the other player is type s. By this way, he is better off than staying

on-path if the other player is type s, since pt > pc(s + s); he is no worse than

staying on-path if the other player is type s, since pt ≤ ps < p̂1 < pc(2s).

Then use backward induction, suppose we have qt where no revealing hap-

pens stay on-path for pt ∈ [pc(s+s), p]. Then for the interval [p, p+dp], according

to Lemma 2 and Lemma 4, we will not have full separation and type s randomly

revealing. If we have qt < qi(pt) in [p, p + dp], then to make qt match qi(pt)

again at p, we need type s randomly revealing to drive up qt. But according to

Lemma 3, we then need to have qt = qi(pt), which is a contradiction.

If we have qt > qi(pt) in [p, p + dp], since there is no full separation and

no random revealing from type s, the only possibility is that two types use the

pooling strategy25. Furthermore, the pooling strategy cannot be k < 1, since

that means type s will want to deviate to k = 1 to reveal himself and enter

an one-sided private information problem, due to the similar reason as in the

proof for Lemma 2. But if two types pool at k = 1, type s will not want to

mix revealing and mimicking for any larger pt. Recall the proof in Appendix

A.1.3, q0 is large enough to ensure that mimicking is better for type s with any

pt > ps. Here we have two types pooling at qt > qi(pt) > q0. Consequently, the

result in Appendix A.1.3 still holds here – for any larger pt than the current

pooling interval, type s is better off with mimicking (using k = 1) and cannot do

partial revealing. But the game starts with q0, so without the random revealing

of type s, we cannot get our qt here, which is between q0 and 1. Now we have

a contradiction for having a pooling interval.

So, for pc(s+ s) < pt ≤ ps, we can only have qt = qi(pt).

25Notice that by using type s randomly revealing we cannot get qt > qi(pt).
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(3) pt > ps

In this part the on-path qt is q0. Suppose we already have qt on-path for

pt ∈ [ps, p]. Then let us consider the interval [p, p + dp]. If we have qt > q0,

to let qt match q0 again at pt = p, we need a gradual decreasing in qt as time

goes by, which means we need random revealing from type s. But it cannot be

achieved due to Lemma 2.

If we have qt < q0, then before this moment, we must have a gradual de-

creasing of qt in time to make the initial belief q0 go down to this qt, which

again requires random revealing from type s. But it is not achievable.

So, we can conclude that for pt > ps, qt needs to stay at q0.
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