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Abstract

A seller bargains with two buyers to make a deal with each of them, using an alternating-

offer protocol (“AO”). The bargaining begins with one buyer, with the second entering

at a future date. The seller has a concave utility function defined over total payments

from buyers, so the two bargains affect each other. When the seller’s utility function

exhibits decreasing absolute risk aversion, a higher price in the first bargain increases

the price in the subsequent bargain. Even if two players are identical except for the

arrival date, they will make different payments to the seller. The shape of the utility

and the arrival date determine whether there is a first or second-mover advantage. Al-

though agreements in our model are reached on different dates, the usual limit payoffs

for AO do not approach those of the sequential Nash bargaining solution. Finally, we

extend the model to a vertical market, in which an upstream seller supplies downstream

buyers with critical input. These buyers compete with each other in the downstream

market. We find that, even if the buyers are symmetric Cournot competitors, the

equilibrium of the model is asymmetric, with one buyer paying more than the other.

Prior to entry by the second firm, the price set by the incumbent can decrease with

the increased expected entry dates. Standard vertical models would not predict this.
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1 Introduction

The literature on alternating offer (‘AO’) bargaining model (Rubinstein, 1982) has said

little about the behavior at the market level. If we want to use AO bargaining model to say

something about how bargaining affects market outcomes, we need to account for the fact

that the bargain made by one buyer with a seller may affect the profits of another buyer who

has made her own bargain with the seller. In this setup, it is clear that bargaining theory

must consider the interdependence between bargains if it is to be useful in elucidating market

behavior. Therefore, we have been obliged to extend the AO bargaining model to account

for interdependent bargains.

There are only a few papers that study multiple episodes of bargaining, in which one side

is bargaining with multiple partners to make multiple interdependent deals. These papers

use the Nash bargaining solution (‘NBS’) (Horn and Wolinsky, 1988). Or they introduce

extra interaction between buyers to induce the interdependence between bargains (Abreu and

Manea, 2023). The analysis focusing on the pure interaction between bargains without the

interaction between buyers under the solution concept of Rubinstein (1982) is still missing.

The starting point of our paper is that we study the interaction between bargains. We

analyze a bargaining model with one seller and two buyers that is different from Horn and

Wolinsky (1988) in that we based ours on the solution concept of Rubinstein (1982).

For most of our analysis, interdependence between bargains comes from our assumption

that the seller has a concave utility function defined on the total payment by buyers. For

the sake of simplicity, we assume that buyers have linear utility.

In our model, the seller and one buyer are in the game at the beginning, while the other

buyer arrives at a known future date. The seller bargains for a contract with each of the two

buyers. The contract generates a flow payoff 1 to the buyer each period, and buyers and the

seller bargain over the flow price paid to the seller each period.

Before the arrival of the second buyer, there is a two-player AO bargaining game between

the seller and the first buyer. If they reach an agreement before the second buyer arrives,

there will be another two-player AO bargaining game between the seller and the second

buyer. If the first buyer does not have an agreement when the second buyer arrives, the
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seller will bargain with two buyers simultaneously in an AO bargaining protocol. The seller

makes offers to both buyers simultaneously in odd periods and two buyers make offers to the

seller simultaneously in even periods.

As an application, we consider the situation of two health insurance providers who want

to include a hospital in their networks. To do that, insurers need to pay a fixed transfer to

the hospital. The hospital will provide treatment to patients who buy insurance from one of

the two insurers. In this example, the hospital is the seller, and the insurers are the buyers.

The hospital can be included in both networks and will bargain with two insurers to decide

on the transfers. Two negotiations can start on different dates. Alternatively, the hospital

may be renewing contracts with two insurers, and those contracts have different termination

dates.

To motivate the hospital’s concave utility in monetary payments, we can consider that

the hospital uses these payments to fund other projects. Ranking them by profitability, the

hospital will start from the project with the highest return and work its way down, as long

as it has the funds to do so. Thus, the marginal payoff from the monetary payments will

decrease. This will generate a concave seller utility function defined over total payments to

the seller.

Given concave seller utility, if the seller already has a payment from the first bargain,

she is less eager for the extra payment from a second bargain. This assumption leads to the

interaction between the bargains with the first buyer and the second buyer. If we assume

linear utility for the seller, then the two bargains do not affect each other. The outcome of

our model is simply two separate Rubinstein bargains.

If the first buyer has already reached an agreement with the seller when the second buyer

arrives, the second flow price is affected by the first flow price. The specific form of the

utility function determines how the second flow price is affected.

As we will see, we can think of seller utility from rejecting as if it were a special kind of

lottery. Risk preferences in this lottery drive the relationship between bargains.

• When the seller has decreasing absolute risk aversion (DARA), the second price in-

creases with the first price.
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• When the seller has increasing absolute risk aversion (IARA), the second price decreases

with the first price.

If the first buyer does not reach an agreement with the seller until the second buyer

arrives, the seller will propose a price to both buyers simultaneously in her turns and the

buyers will propose simultaneously to the seller in their turns. The equilibrium in this

continuation game is symmetric, where buyers pay equally.

Based on the results above, we construct the equilibrium for the whole game, finding

that two agreements are reached immediately after each buyer arrives. In this equilibrium,

though two buyers are identical except for the arrival dates, they end up at different prices.

The shape of the utility function and, also, the arrival date T determine whether there is a

first-mover advantage or second-mover advantage in sequential bargaining.

Comparing the equilibrium to a one-seller-one-buyer Rubinstein bargaining with the same

utility function, we find having a second buyer can benefit the first buyer in some situations

and harm her in others. For example, with DARA, the first buyer can benefit from the

existence of the second buyer. However, the second buyer is always worse off, compared to

the case where she is the only buyer.

We also consider limit results of our AO bargaining model, where the intervals between

two proposals become arbitrarily small, and the arrival time between buyers remains un-

changed. The limit result is asymmetric as in our model, but it is not the solution to a

sequential Nash bargaining problem. If we consider a simpler limit result where the discount

factor approaches one, the limit outcomes in both bargains are the same as in simultane-

ous Nash bargaining. However, even with the discount factor going to one, the solution to

our sequential AO bargaining model does not go to sequential NBS. In other words, the

relationship between the two bargains is different from that generated by sequential Nash

bargaining.

We extend our analysis to the case in which the seller is bargaining with two buyers, both

of whom compete with each other in a downstream market. This extends the setup in Horn

and Wolinsky (1988) to AO bargaining. The first buyer is an incumbent monopolist. The

other one arrives at a known date. If input prices were determined on a take-it-or-leave-it

(‘TIOLI’) basis, the incumbent’s price would not change with the date when entry occurs.
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In our model, the incumbent’s price is affected by the entry date. One possible outcome

is: the further in the future is the entry date, the lower is the output price in the pre-entry

period. Another difference concerns market shares. In the TIOLI setup, if the two buyers

are otherwise identical, they pay the same price for the input, and have equal shares of the

downstream market. Our model generates different input prices for the two buyers, and,

hence, different downstream market shares.

Related literature. Though there is a large literature on bargaining, most papers study

single-episode bargaining problems, where players bargain to split one pie. They have studied

this problem with many variations, such as incomplete information (Fudenberg and Tirole,

1983; Cramton, 1992), and different bargaining protocols (Baron and Ferejohn, 1989; Cho,

1990).

There are only a few papers studying multiple-episode bargaining problems. For example,

Horn and Wolinsky (1988) studied a monopoly supplier of an input bargaining with two firms

to sell inputs to both firms while firms compete in a downstream market. In their model,

the supplier is bargaining over input prices with two downstream firms. Their bargains

interact because there is downstream competition between firms. Horn and Wolinsky used

the sequential NBS to characterize the bargaining.

A more recent paper, Abreu and Manea (2023), studies the situation where a seller sells

products to a group of buyers using the random-proposer bargaining protocol. Players have

linear utilities, and the interaction between the bargains with different buyers comes from

scarce capacity. The seller does not have enough output to satisfy the demand of all buyers

and there will be competition among buyers for outputs.

Unlike the above two papers, we use the solution concept of Rubinstein (1982) to study

the multiple-episode bargaining problem, and the interaction across episodes does not come

from interactions between buyers as in Abreu and Manea (2023). Instead, the interaction

comes from the concave utility function of the seller. It reveals that two bargains do not

require buyers to interact to affect each other. A common assumption of concave utility

can lead to the interaction. As noticed above, the concavity may reflect differing investment

options available to the seller.

The concave utility function in bargaining has also been studied in the literature. Hoel
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(1986) studies the nonlinear utility in the bargaining problem and finds that the limit price

of AO bargaining goes to the Nash bargaining price as players become patient. Sobel (1981)

considers a concave, increasing von Neumann-Morgenstern utility function for players and

establishes the relationship between a class of bargaining solutions, like those of Nash and

Raiffa, Kalai. Crawford and Varian (1979) finds that even if players are allowed to mis-

represent their utilities as a weakly concave function in the Nash bargaining problem, they

would report linear utility functions. Volij and Winter (2002) study the risk aversion in the

bargaining game, which is a property of the concave utility function. White (2008) studies

the effect of prudence in a bargaining problem with risk. Adding to the literature, our model

studies how risk aversion affects the interaction between two bargains instead of within one

bargain.

The organization of the paper is as follows. Section 2 provides the setup. Section 3

introduces the main message about the interaction between bargains. Section 4 discusses an

extension of the model. Finally, Section 5 concludes the paper.

2 Model

We study a bargaining model with three players, one seller, and two buyers (B1, B2).

The seller wants to make two contracts and each buyer demands one contract. The seller

bargains with each buyer for one non-changeable contract.

The time is discrete, and the horizon is infinite (t “ 1, 2, ...). The seller and B1 arrive at

t “ 1 and start bargaining, while B2 arrives at date T ą 1. Here we assume T to be odd

to ensure that the seller is still the first proposer when B2 arrives, but it is not essential.

In other words, departing from the model in Rubinstein (1982), we have a second buyer

arriving at date T and starting to bargain with the seller thereafter.

When the seller and the buyer reach an agreement, the contract between them will take

effect immediately and last permanently. The buyer gets a flow payoff of 1 from the contract

each period, and she also pays a flow price of x to the seller each period, which is determined

by bargaining. Thus, the flow monetary payoffs are x to the seller and 1 ´ x to the buyer.

We assume that the seller has a concave utility function up.q over a total payment of x in
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a period. The utility up.q is (1) strictly increasing, (2) twice differentiable, and (3) strictly

concave. On the contrary, buyers have a linear utility vpxq “ x.1 Suppose the flow prices in

two bargains are x1 and x2 respectively. When only one bargain is made, the seller’s utility

for each period is upx1q; when both bargains are made, the seller’s utility for each period is

upx1 ` x2q. As for buyers, they have flow utility 1 ´ x1 and 1 ´ x2.

2.1 Bargaining protocol

Players use alternating-offer (AO) bargaining to determine the flow payment in each

contract, which is similar to Rubinstein (1982). In odd periods, the seller proposes a flow

price to every active buyer, and each active buyer decides to accept or reject; in even periods,

each active buyer proposes to the seller, and the seller decides to accept or reject. Once

an offer is accepted, the contract takes effect immediately, and the buyer leaves the game

(becomes inactive).

Before T , there is only one buyer in the game, which is a one-to-one alternating offer

bargaining. After T , there are two possibilities. If B1 has left the game, the bargain between

the seller and B2 is the same as Rubinstein bargaining, apart from the concavity of the

seller’s payoff. If buyer 1 has not left the game, then the seller bargains simultaneously with

the two buyers. The seller proposes offers to both buyers simultaneously in her turns, and

two buyers propose offers to the seller simultaneously in their turns.

2.2 Strategies and equilibrium concept

We assume that the seller observes the whole history of the game. This includes all past

offers, acceptances, and whether buyers are active in the game. However, a buyer can only

observe her own bargaining history. The buyer cannot observe the detailed offers made in

the other bargain and can only observe the date of agreement.2 Therefore, this is a game of

complete, but imperfect information.

1Our results can be generalized to a strictly increasing and strictly concave buyer utility vpxq. By letting
v̂ “ vpxq, we can write the seller’s payoff as upv´1pv̂qq, and the buyer’s payoff as v̂. Notice that if vp.q is
concave, the function upv´1pv̂qq is a decreasing and concave function in v̂, so we can transform the problem of
two concave utility functions into the problem of one concave utility function and one linear utility function.

2If the other buyer has not made an agreement, the buyer knows that she is still in the game.
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As for the seller’s strategy, in an odd period, she proposes a flow price x P r0, 1s to each

active buyer in the game, conditional on the whole history. In an even period, she sees the

proposed flow price by each active buyer and the past history and decides whether to accept

the offer from each active buyer.

As for the buyers’ strategy, in an even period, active buyers will propose flow prices

y P r0, 1s to the seller based on the history that each buyer observes. In an odd period, an

active buyer will decide to accept an offer from the seller, given the offer from the seller and

the history observable to that buyer.

In a period, if there are two contracts that have been made, and B1 pays a flow price x1

and B2 pays a flow price x2, then the normalized flow payoff of the seller is p1´ δqupx1 `x2q,

while two buyers have the flow payoff p1´δqp1´x1q and p1´δqp1´x2q. Here 1´δ is scaling

the payoff.

We use perfect Bayesian equilibrium (PBE) as the equilibrium concept. In this equi-

librium, at each information set, players maximize the discounted sum of normalized flow

payoffs. And we apply the refinement of passive beliefs for buyers.

Passive beliefs refer to Bi’s belief about what is happening with Bj when Bi receives an

out-of-equilibrium offer from the seller in the current period, which affects her continuation

payoff. Passive beliefs means that Bi will believe the seller is playing on-path strategy to

Bj in the current period, even if Bi observes an out-of-equilibrium offer from the seller.

Moreover, with passive beliefs, if an agreement is reached before date T , B2’s belief about

the first price does not change with the seller’s actions in the bargaining with B2. The belief

only depends on the agreement date B2 observes.

Additionally, we need to assign the off-path belief to buyer 2 when he observes an off-

path agreement date. With some belief assignments, we can have an equilibrium where the

agreement is not reached immediately. However, We can use a refinement similar to D1

criterion to exclude this probability (it is something in the spirit of D1 criterion since the

first bargaining is a game between seller and buyer 1 instead of a simple signaling).

We are considering the belief of buyer 2 when the equilibrium agreement date is t ą 1.
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To look at the off-path belief observing the agreement date reached at period 1, define

Dpp1, r0, 1sq :“
ď

µPr0,1s

tp2 “ x̂2pµq : U1pp1, p2q ą U˚ and p1 ď 1 ´ δt ` δtptu

D0
pp1, r0, 1sq :“

ď

µPr0,1s

tp2 “ x̂2pµq : U1pp1, p2q ě U˚ and p1 ď 1 ´ δt ` δtptu

where p1 is the price proposed by the seller in period 1, µ is buyer 2’s belief of the price in

bargain 1 seeing agreement date period 1, pt is the equilibrium proposal in period t, U˚ is

the seller’s equilibrium payoff, and U1pp1, p2q is the seller’s payoff where the seller proposes

p1 in period 1 and the price in the bargain 2 is p2.

These are the sets of prices in the second bargain such that buyer 1 accepts the offer

p1 in period 1 and the seller is strictly/weakly better off by proposing p1 in period 1 than

in the equilibrium. Notice that when p1 ą 1 ´ δt ` δtpt, two sets are always empty. A

first-bargain price p is eliminated by D1 criterion if there is another price p1 such that

D0pp, r0, 1sq Ă Dpp1, r0, 1sq. With this refinement on buyer 2’s off-path belief seeing an

agreement reached at date 1, we can exclude the possibilities of delay in the agreement.

3 Equilibrium behavior in sequential bargaining

To solve for the equilibrium of the whole game, we first need to figure out what happens

in the bargaining between the seller and B2 if the seller already has an agreement with B1

before the date T . We also need to figure out what will happen if there is no agreement

before the date T .

3.1 Bargaining after having an agreement with B1

In this subsection, we analyze what would happen in the second bargain, if the seller and

B1 have already reached an agreement before B2 arrives.

The equilibrium of the continuation game can be constructed in the same way as Rubin-

stein (1982). Let the seller propose the price x2 in her turns, and B2 proposes the price y in
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her turns. They satisfy

$

&

%

1 ´ x2 “ δp1 ´ yq

upx1 ` yq “ p1 ´ δqupx1q ` δupx1 ` x2q

(1)

The first equation requires that the seller’s proposal makes B2 indifferent between accept-

ing and rejecting. The second equation requires that the buyer’s proposal makes the seller

indifferent between accepting and rejecting. From (1), we can solve for x2 as a function of

x1, denoted as x̂2px1q. This is the price that the second bargain will arrive at, given the

price reached in the first bargain.

If the seller has an agreement with buyer 1 at price x1, the unique equilibrium outcome

of the continuation game starting at T is that the seller proposes a price following a function

x̂2px1q and B2 accepts at date T , where x̂2px1q is determined by (1).

Uniqueness can be proved using an argument similar to Shaked and Sutton (1984). See

Appendix A.1.

Given a payment in the first bargain, this will affect the outcome of the second bargain.

The direction of the effect of x on x̂2pxq depends on the specific form of the utility up.q. We

address this in Proposition 1.

Proposition 1

• If up.q has decreasing absolute risk aversion (DARA) , x̂2p.q is increasing

• If up.q has increasing absolute risk aversion (IARA) , x̂2p.q is decreasing

To see this, we first rewrite (1) as

u
´

x1 ` 1 ´
1 ´ x̂2px1q

δ

¯

“ δu
`

x1 ` x̂2px1q
˘

` p1 ´ δqupx1q (2)

The RHS of (2) is the seller’s payoff from rejecting B2’s offer, which can be regarded as

the expected payoff of a lottery. This lottery has the probability of δ that the seller gets

x1 ` x̂2px1q, and a probability of 1´ δ that she gets x1. Thus, the LHS, which is the buyer’s

proposal, is the certainty equivalent of the lottery. Figure 1 illustrates the expected payoff

9



Figure 1: How risk aversion affects the second price

of the lottery (point A) and its certainty equivalent (point B), as well as the risk premium.

At point B, the certainty equivalent payoff of the seller is given by ´
1´x̂2px1q

δ
` x1 ` 1

If the seller is more risk-averse, she has a larger risk premium and thus a smaller certainty

equivalent. As a result, B2 will propose less to her, which leads to a smaller flow price x̂2px1q.

Consider a utility up.q with DARA. If x1 is larger, then the seller is more wealthy. Ac-

cording to DARA, the seller is less risk averse with a larger x1. Thus, as x1 goes up, the

certainty equivalent of the lottery, which is also the buyer’s proposal, becomes larger, which

leads to a larger x̂2px1q. Similarly, with IARA, x̂2px1q decreases with x1.

On the other hand, we can regard the cost of delay as the probability of breaking

down instead of the discount factor. Having a discount factor of δ is the same as hav-

ing a breakdown probability 1 ´ δ, because both of them make the rejection payoff be

p1 ´ δqupx1q ` δu
`

x1 ` x̂2px1q
˘

. In this explanation, a seller who is less risk-averse is less

afraid of the possible breakdown and can ask more from the buyer.

3.2 Simultaneous alternating offer bargaining with two buyers

In this subsection, we introduce what would happen if there is no agreement made before

the date T . This would set up a simultaneous bargaining at that point.

The two buyers can make or receive different offers. However, in the equilibrium of this

continuation game, the outcomes are symmetric: buyers pay equally to the seller.

Suppose, in equilibrium, the seller proposes x˚ to both buyers. If a buyer rejects, she
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believes that the other buyer will accept the offer x˚, so she will bargain with a seller who

has a contract at the price x˚ starting next period. As a result, in the next period, the buyer

who rejects proposes 1 ´
1´x̂2px˚q

δ
in her turn. Then, x˚ should make the buyer indifferent

between accepting and proposing in the next period:

1 ´ x˚
“ δp1 ´ p1 ´

1 ´ x̂2px
˚q

δ
qq ô x˚

“ x̂2px
˚
q

If the seller does not have an agreement with buyer 1 by date T , the equilibrium outcome

of the subgame starting at T is that the seller proposes x˚ to both buyers and buyers accept

at date T , where x˚ solves x “ x̂2pxq.

Notice that though any equilibrium has the condition x “ x̂2pxq, the uniqueness is not

guaranteed since x̂2pxq may have more than one fixed point.

With IARA, x̂2pxq is decreasing according to Proposition 1. In this case, x̂2pxq “ x has

only one solution.

However, with DARA, x̂2pxq is increasing according to Proposition 1, and x̂2pxq “ x may

have more than one solution. One sufficient condition to guarantee the uniqueness of the

fixed point is x̂1
2pxq being monotone.

Notice that the multiplicity here does not lead to a delay in the equilibrium because the

buyer cannot observe the offer the other buyer receives in the current period. With multiple

equilibria, one possible way to construct a delay in equilibrium is that in the current period,

players are playing a bad equilibrium for buyers, but in the next period, they play a better

equilibrium for buyers, so buyers may want to delay. However, with passive belief, no matter

what offer the seller proposes to her, she will believe that the other buyer will accept the

offer, and the game will not proceed to a better equilibrium for her if only one buyer rejects.

As for the possibility that both buyers reject in equilibrium and in the next period they

go to a better equilibrium for buyers, the seller will want to propose a smaller price to have

buyers accept the offers. By doing this, the seller is in the situation of the first proposer,

while letting buyers reject makes buyers the first proposer. Besides, there is a discount cost

in delay.
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3.3 Equilibrium results

With these results, we can construct the equilibrium of our model. At date T ´ 1, the

seller knows that if she rejects, then, in the next period, she will get involved in simultaneous

bargaining with two buyers. She will get a flow payoff up2x˚q from that. Considering this,

B1 will do backward induction accordingly. Further backward induction gives the seller’s

proposal at date t “ 1, which will be accepted by B1 immediately. Let us call this proposed

flow price at date t “ 1 in equilibrium as x˚
1 . Then, the second bargain generates an

equilibrium flow price of x˚
2 “ x̂2px˚

1q, and the agreement is done at date T .

Proposition 2 There is an equilibrium outcome of the game where two agreements are

reached immediately at date 1 and date T .

Notice that the process of backward induction does not cause multiplicity, so whether we

have a unique equilibrium in the game depends on whether we have a unique equilibrium in

the simultaneous bargaining.

The bargaining process with two active buyers has a unique result when x̂2pxq has a

unique fixed point. The result of backward induction is also unique, so our x˚
1 is unique in

this case. Moreover, the outcome is unique in the continuation game after the seller and B1

reach an agreement of x˚
1 . Therefore, the outcome that B1 pays a flow price of x˚

1 and B2

pays a flow price of x˚
2 “ x̂2px

˚
1q is the unique equilibrium outcome in our model when x̂2pxq

has a unique fixed point.

The possible multiplicity of the equilibrium also draws attention to the current structural

model used in IO research. As noted, empirical IO researchers often assume risk-neutral

simultaneous NBS. However, there is no reason to assume that risk neutrality is correct.

Failure to recognize the possibility of concave utility for the seller may make researchers

overlook other possible equilibrium outcomes.

3.4 How bargains affect each other

To see how these two episodes of bargaining affect each other, we compare the equilibrium

flow prices in our model (x˚
1 , x

˚
2) to the one-seller-one-buyer Rubinstein bargaining with the
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same utility. If the results are different, bargains are affecting each other since adding a

second buyer to the game changes the equilibrium outcome. We refer to the one-seller-one-

buyer Rubinstein bargaining with the same utility as the unaffected bargaining and denote

its flow price outcome as xU . In the application of the hospital and insurers, this comparison

is comparing the situations of the insurer being the only buyer of the hospital’s services and

having a second buyer.

When up.q is concave, because x˚
1 and x˚

2 are not always equal to the unaffected bargaining

price xU , the existence of one bargain affects the other bargain. The first flow price affects

the second flow price depending on the form of up.q. Players in the first bargain will change

their actions strategically due to the existence of such an effect. On the contrary, if up.q

is linear, such an interaction between two bargains does not exist: both flow prices are the

same as the unaffected bargaining. Therefore, the interaction comes from the concavity (risk

aversion) of up.q.

The relationship between x˚
1 , x

˚
2 , and xU is ambiguous. It depends on the specific form

of the utility function up.q and T .

If up.q has DARA, then x˚
2 ą xU . If up.q has IARA, then x˚

2 ă xU . To see this, notice that

the outcome from the unaffected bargaining is the same as the bargaining between the buyer

and the seller with no previous agreement, xU “ x̂2p0q. The seller is less wealthy without a

previous agreement, so with DARA, the seller is more risk averse in this situation, and the

price she can get is smaller. For IARA, it is the opposite way.

As for the relationship between x˚
1 and xU , assuming DARA does not give a consistent

result. For example, assume a utility with DARA, upxq “
?
x and δ “ 0.9, we have x˚

1 ą xU

with T “ 3, and x˚
1 ă xU with T “ 9.

If we assume IARA for the seller, we have x˚
1 ă xU .

Compared to the situation where there is only one buyer, she is better off if she has

another buyer in the game if the seller has IARA. With the more realistic assumption of

DARA, being the only buyer is better than being the second one in the sequential bargaining.

However, when comparing with being the first one in sequential bargaining, whether being

the only buyer is better off or worse off is ambiguous. The first buyer knows that her payment

also changes the seller’s payment in the second bargaining process. The strategic interaction
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in the bargaining can make the first buyer pay more or less than if she were the only buyer.

3.4.1 Forces affecting bargaining outcome

In this section, we examine the economic forces behind the setting of the payments made

by the first and second bargainers. The setting of the first price is complicated. This is

because it is affected by two forces. One force is the absolute risk aversion of the seller. The

second force is the marginal utility of the second price, which affects the marginal utility of

the first price. We have discussed how the first force affects the second price x˚
2 . However,

the first price x˚
1 is affected by both forces.

To see why x˚
1 is affected by two forces, recall that x˚

1 is determined by backward induc-

tion. Let the seller’s proposal in periods 1 and 3 be x3, and the buyer’s proposal in period

2 be y2. Using backward induction from periods 2 to 1, we have:

1 ´ x1
“ δp1 ´ y2q

Backward induction from period 3 to 2 yields:

p1 ´ δT´2
qupy2q ` δT´2u

´

y2 ` x̂2py
2
q

¯

“ pδ ´ δT´2
qupx3

q ` δT´2u
´

x3
` x̂2px3

q

¯

Thus, we can link periods 3 and 1. We have the following.

up1 ´
1 ´ x1

δ
q ` δT´2

”

u
´

1 ´
1 ´ x1

δ
` x̂2p1 ´

1 ´ x1

δ
q

¯

´ up1 ´
1 ´ x1

δ
q

ı

“

δupx3
q

looooooomooooooon

Certainty equivalent

` δT´2
”

u
´

x3
` x̂2px

3
q

¯

´ upx3
q

ı

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

Marginal utility from second payment

(3)

The expression for x1 illustrates two forces. The first terms on both sides of (3) represent

the first force, and the second terms on both sides of (3) are the marginal utilities of the

price in the second bargaining, representing the second force.

For the certainty equivalent effect, notice that the first term on the RHS of (3) can be

regarded as the expected payoff of a lottery, which gives x3 with probability δ, and 0 with

probability 1´ δ. Consequently, the first term on the LHS is the certainty equivalent of this
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lottery. Thus, when the seller is less risk averse, she will have a lower risk premium and

a higher certainty equivalent, which makes x1 higher. This is how the certainty equivalent

affects the x1.

We also have terms on both sides, which represent the marginal utilities of the second

payment. Adding the certainty equivalent effects to the marginal utility effects will determine

the value of x1.

For example, we first consider x̄1 that only equates only the certainty equivalence terms,

i.e., the first terms on two sides, i.e., up1 ´ 1´x̄1

δ
q “ δupx3q. Now account for the differing

marginal utility effects, (adding these terms back into the equation). This gives the following.

We are comparing

up1 ´
1 ´ x̄1

δ
q ` δT´2

”

u
´

1 ´
1 ´ x̄1

δ
` x̂2p1 ´

1 ´ x̄1

δ
q

¯

´ up1 ´
1 ´ x̄1

δ
q

ı

(4)

and

δupx3
q ` δT´2

”

u
´

x3
` x̂2px3

q

¯

´ upx3
q

ı

(5)

If the marginal utility of the second payment in (4) is smaller than in (5), that means x̄1

does not equate the equation (3), and is making LHS too small. Thus, x1 that equates (3) is

larger than x̄1. In this situation, the second force is making x1 larger compared to the case

without the second force. Similarly, if the marginal utility of the second payment in (4) is

larger than in (5), the second force is making x1 smaller.

As for whether the marginal utility of the second payment is larger in (4) or (5), it

depends on how large the second prices are and the seller’s marginal utility u1p.q.

First notice that for x̄1 s.t. up1 ´ 1´x̄1

δ
q “ δupx3q, we have 1 ´ 1´x̄1

δ
ă x3 since up.q is an

increasing function. With DARA, x̂2p.q is increasing, so x̂2px
3q ą x̂2p1 ´ 1´x̄1

δ
q, which tends

to make the marginal utility in (5) larger. However, larger x3 not only makes the second

price larger but also makes u1px3q smaller due to concavity. Thus, The second force has an

ambiguous effect with DARA. As for IARA, smaller 1 ´ 1´x̄1

δ
is making both x̂2p1 ´ 1´x̄1

δ
q

and u1p1 ´ 1´x̄1

δ
q larger, so the second force here makes x1 smaller.

A more direct intuition of the second force is that when the marginal utility from the

second price is large, the seller will require less first price from buyer 1 since she is satisfied
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(a) Decreasing x̂2p.q (b) Increasing x̂2p.q

Figure 2: Which buyer has advantage

more easily.

These forces can explain the relationship between x˚
1 , x

˚
2 , and xU . x˚

2 is only affected

by the first force, so DARA, which leads to a less risk-averse seller in bargain 2, will make

x˚
2 ą xU .

But x˚
1 is affected by both forces, with DARA, and the second force may lead to a larger

or smaller x˚
1 , which leads to the ambiguous results in the comparison between x˚

1 and xU .

3.4.2 Bargaining strategy results

In our model, two identical buyers end up at different flow prices. It is natural to ask

which buyer will pay less. The specific form of up.q and T determine which buyer pays a

lower flow price.

To see the ambiguity here, look at the case where T is arbitrarily large. As T goes to

infinity, the outcome of the first bargain goes closer and closer to the unaffected bargaining,

because the effect of the second bargain in the far future is negligible. As a result, the

first flow price will be close to xU “ x̂2p0q. This means that the second flow price must be

close to x̂2px̂2p0qq. The shape of x̂2p.q will affect the relationship between two flow prices.

For example, as shown in Figure 2 (a), if x̂2p.q is decreasing (IRAR), the first flow price

(x˚
1 “ x̂2p0q) is higher than the second flow price (x˚

2 “ x̂2px̂2p0qq). Figure 2 (b) says that

the first price is lower than the second price when x̂2pxq is increasing (DARA).

We can see that in our bargaining setup, buyers do not always have a first-mover ad-
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vantage. The seller’s attitude towards risk will affect which buyer has an advantage. If the

seller has IARA and x̂2p.q is decreasing, there can be a second-mover disadvantage. If the

seller has DARA and x̂2p.q is increasing, there can be a first-mover advantage for buyers.

These two forces affecting the bargaining outcome can also explain the relationship be-

tween x˚
1 and x˚

2 . In our example of large T , the second force is negligible, since the second

terms on both sides of 3 go to zero as T goes up. Therefore, the certainty equivalent effect

dominates when T is large. This says that when the seller is less risk averse, she has a larger

certainty equivalent and thus a larger flow price from bargaining. With DARA in Figure

2 (b), the seller is more wealthy and thus less risk-averse in bargaining 2, so the first force

makes her x˚
2 larger than x˚

1 .

In another example, assume upxq “
?
x, δ “ 0.9, we find that x˚

1 “ 0.431, x˚
2 “ 0.487

when T “ 3, x˚
1 “ 0.356, x˚

2 “ 0.483 when T “ 11. Notice that a smaller T is making x˚
1

and x˚
2 closer to each other. In this example, we have a utility function displaying DARA.

Therefore, the certainty equivalent effect says that x˚
2 should be larger, but the marginal

utility effect can make x˚
1 larger and thus make two prices closer. Notice that the second

force has more effect with smaller T , so the prices in two bargains are closer to each other

at T “ 3 than T “ 11.

Another interesting point arises when assuming that one buyer values the contract as

2 each period and one values the contract as 1 each period. Which buyer would the seller

prefer to bargain with first? This is a question asked frequently in reality. For example, a

hospital may need to bargain with a small insurance provider and a large insurance provider

to decide the contracts to be included in the network. The hospital may want to bargain

with the large provider first so she can get more patients quickly, or she can bargain with

the small provider first to give her more market power, and thus the hospital can have

more bargaining power in the bargain with the large provider. Schulman and Sibley (2023)

discussed a similar problem under downstream interaction of insurance providers using the

Nash bargaining solution, and they found that it is better to bargain with the small provider

so that more competition in the downstream market makes the large provider worse off.

However, in our model, having the small buyer coming first does sometimes induce higher

total payments from buyers. However, having the small buyer first makes the large payment
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from the large buyer come later, which increases the discount cost an can overturn the

tendency to have the small one coming first. For example, when δ “ 0.9, upxq “
?
x,

T “ 3, and two buyers value the contract 1 and 2 respectively, the total payment each

period (x˚
1 ` x˚

2) when the small one comes first is larger, but the present value of dealing

with the big buyer first is higher.

Though we have an opposite result compared to Schulman and Sibley (2023), two results

do not actually conflict. In the NBS method, there is no discount cost. In our model,

sometimes having the small one first can make the total payment larger, which is consistent

with their result. However, this benefit of having the smaller one first can be offset by the

discount cost concerns.

3.5 Limit results

There is a tradition in the AO literature of proving that in the limiting cases, the AO

result converges to the NBS result. We look at two limit results. The first limiting case is

letting δ go to 1. The second is to fix T , but allow for an interval of size ∆ between bargains.

In this approach, we can look at the limiting result where the interval between proposals ∆

goes to zero, but the arrival time between buyers T remains unchanged. In the limit, there

are infinite periods before time T . Now we write the discount cost of one-period delay as

e´r∆, where r is the discount factor.

Recall that to solve for the equilibrium, we must first consider the continuation game

after T with no agreement made before and then do backward induction. For the continu-

ation game which is a simultaneous AO bargaining, the limit result is a simultaneous Nash

bargaining solution (NBS), which solves (see A.4)

$

’

&

’

%

x “ argmax
s

pupA ` sq ´ upAqqp1 ´ sq

x “ A

(6)

Denote the solution of (6) as z˚. Let pt be the proposal at time t before time T . The
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backward induction at the limit says pt satisfies

pT “ z˚

and

rupptq “ p2p1
t ` rp1 ´ ptqq

”

p1 ´ e´rpT´tq
qu1

pptq ` e´rpT´tqu1
`

pt ` lim
∆ñ0

x̂2pptq
˘`

1 ` lim
∆ñ0

x̂1
2pptq

˘

ı

where lim∆ñ0 x̂2pptq is the solution to the Nash bargaining problem maxspuppt`sq´upptqqp1´

sq. See A.4 for the proof.

Proposition 3 As the interval between proposals ∆ approaches zero and the time before

arrival T remains unchanged, the limit result is asymmetric but different from the sequential

Nash bargaining solution.

z˚ satisfies lim∆ñ0 x̂2pz
˚q “ z˚ because it is the solution to (6). Thus, if z˚ is the

first price, the outcome will be symmetric, i.e., prices of two bargains are the same. But

the backward induction at the limit makes the first price different from z˚, so there is an

asymmetric result instead. Moreover, it is not the usual sequential Nash bargaining solution,

because this limit result changes with T .

We also look at the limit result of fixing the periods before the arrival of B2 and letting

δ go to 1. Though in our model, two agreements are reached at different dates, when we let

the discount factor δ go to 1, the limit result is a simultaneous NBS.

Proposition 4 As δ Ñ 1, the equilibrium payoffs of the model go to the symmetric simul-

taneous NBS – buyers end up paying the flow price z˚ which solves (6)

To see this, we can consider the continuation game where two buyers are active after the

date T . As an AO bargaining of one seller bargaining with two buyers simultaneously, its

limit result is the NBS of one seller bargaining with two buyers simultaneously. And the

symmetric equilibrium result in this continuation game makes the limit outcome symmetric.

Furthermore, as δ Ñ 1, the backward induction before date T does not change the price

offered. As a result, the limit result becomes the symmetric simultaneous NBS.
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We can also regard the limit of δ Ñ 1 as making the intervals between proposals approach

zero, while fixing the number of intervals before B2 arrives unchanged. In this explanation,

at the limit, all proposals of bargains 1 and 2 tend to be made at one moment. Thus we get

simultaneous NBS instead of sequential NBS.

Notice that the sequential NBS is different from the simultaneous NBS. With two Nash

bargaining done sequentially, in the second Nash bargaining, the seller’s outcome from the

first Nash bargaining will be the disagreement point. Let the seller have a payment of x1

from the first Nash bargaining, then the second Nash bargaining problem is

max
s

pupx1 ` sq ´ upx1qqp1 ´ sq

which gives an outcome depending on x1, denoted as x̂Npx1q.

Anticipating this, the first Nash bargaining problem is

max
s

ups ` x̂N
psqqp1 ´ sq

where the disagreement point of the seller is getting nothing in the bargaining.

When the seller has concave utility, x̂Npx1q depends on x1 and two bargains have different

outcomes. For example, with upxq “
?
x, the outcomes in two bargains are 0.120 and 0.424.

The situation is different from the symmetric outcomes of simultaneous NBS.

4 Extension

4.1 Downstream competition

In the main model, buyers do not interact with each other except via bargaining. In this

part, we assume that buyers engage in Cournot competition in a downstream market, and

bargain with the seller over the price of the input.
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4.1.1 Setup

There are three players in the game, one seller and two buyers (B1, B2). Buyers buy a

critical input from the seller. Assume that 1 unit of input can produce 1 unit of output. The

price of that input to each of the two buyers is determined by AO bargaining between each

pair. Once concluded successfully, the terms of a bargain are permanent. After completing

a bargain with the seller, the first buyer enters the downstream market as a monopolist. B2

arrives at date T (T is odd and T ą 1). Once B2 arrives and concludes a bargain with the

seller, it competes with B1 in the downstream market, assuming Cournot competition. All

bargaining uses the same bargaining protocol as in the main model. We still assume the

seller has the utility function upxq. The utility functions of buyers are their Cournot profits.

Put in the context of Industrial Organization, the timing of our game allows us to explore

the interaction between monopoly pricing and entry. Vertical models such as ours are usually

analyzed under one of two different assumptions regarding input pricing. Traditionally,

sellers in the input market have been assumed to make take-it-or-leave-it (”TIOLI”) offers

to buyers of inputs. More recently, models have used the NBS to determine input prices in

vertical models. Our contribution is to use AO bargaining in an otherwise standard vertical

model. In this spirit, we will sometimes infer to B1 as the incumbent and to B2 as the

entrant.

Before date T , there is a one-seller-one-buyer AO bargaining between the seller and B1.

After date T , if the seller has already reached an agreement with B1, then there is simply a

one-seller-one-buyer AO bargaining between the seller and B2. If the seller has not reached

an agreement with B1, then the seller bargains with two buyers simultaneously. In the

seller’s turn, she proposes two offers to buyers simultaneously. In buyers’ turns, the two

buyers propose offers to the seller simultaneously.

We assume that the Cournot market has a demand p “ γ ´βpq1 ` q2q each period, where

p is the price of the output, q1, q2 are the quantities of output by B1 and B2 respectively, and

γ and β are parameters. When B1 has a purchasing contract with the seller with an input

price c1 and B2 does not have a purchasing contract, B1 is the monopolist in the downstream
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market. Then B1 faces with the following problem in each period:

max
q

pγ ´ βq ´ c1qq

Clearly, a monopoly buyer with an input price c1, will choose the quantity of the output

qmpc1q “
γ´c1
2β

each period, so her payoff in a period vmpc1q is

vmpc1q “
`

γ ´ βqmpc1q ´ c1
˘

qmpc1q “
pγ ´ c1q

2

4β
“ βqmpc1q

2,

and the seller’s utility of this period is u
`

c1qmpc1q
˘

.

If both B1 and B2 have entered the market with the input prices c1 and c2 respectively,

then Cournot competition decides their reduced form outputs in one period as q1pc1, c2q and

q2pc1, c2q:

q1pc1, c2q “
γ ´ 2c1 ` c2

3β
; q2pc1, c2q “

γ ´ 2c2 ` c1
3β

Then buyers’ payoffs in this period v1pc1, c2q and v2pc1, c2q:

v1pc1, c2q “
pγ ´ 2c1 ` c2q

2

9β
“ βq1pc1, c2q

2; v2pc1, c2q “
pγ ´ 2c2 ` c1q

2

9β
“ βq2pc1, c2q

2

and the seller’s payoff in this period is u
`

c1q1pc1, c2q ` c2q2pc1, c2q
˘

.

The strategy definition and equilibrium concept are the same as in Section 2.

4.1.2 Equilibrium results

Using the same method as in Section 3.3, we can solve for the equilibrium. Again, Let

x̂dpxq denote the proposal made by the seller to B2, assuming that the seller has previously

negotiated a payment of x with B1. If the seller has already reached an agreement of flow

price x with B1 before date T , there is a one-seller-one-buyer AO bargaining between the

seller and B2 after date T , then the equilibrium condition for the continuation game after

date T is

$

&

%

v2px, cxq “ δv2px, cyq

u
“

xq1px, cxq ` cxq2px, cxq
‰

“ p1 ´ δqu
“

xqmpxq
‰

` δu
“

xq1px, cyq ` cyq2px, cyq
‰
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upxq “ 5x ´ x2 upxq “
?
x

Profit of B1 Output price Input price Profit of B1 Output price Input price
T “ 5 0.51591 1.2817 0.56346 0.59309 1.2299 0.45975
T “ 7 0.51479 1.2825 0.56502 0.60802 1.2202 0.44048
T “ 9 0.51638 1.2814 0.56281 0.61917 1.2131 0.42626
T “ 11 0.51922 1.2794 0.55886 0.62758 1.2078 0.41560

Table 1: B1’s profits each period and prices of output before date T

upxq “ 5x ´ x2 upxq “
?
x

First input price Second input price First input price Second input price
T “ 5 0.56346 0.54808 0.45975 0.49134
T “ 7 0.56502 0.54885 0.44048 0.48149
T “ 9 0.56281 0.54775 0.42626 0.47420
T “ 11 0.55886 0.54578 0.41560 0.46874

Table 2: Input prices

where cx is the input cost proposed by the seller, and cy is the input cost proposed by B2.

The solution to cx is the second price x̂dpxq.

In this model, the price in bargain 2 is more likely to increase in the price in bargain 1

compared to the main model. This is because now the input price paid by the incumbent

B1 directly affects the entrant’s payoff post entry. If B1 has a higher production cost, B2

has less pressure from the competition and is more willing to accept a high input price.

On the other hand, if the seller has not reached an agreement with B1 at T , then the

game becomes a simultaneous bargaining between the seller and two buyers. The seller will

propose the same price x˚ to two buyers and x˚ satisfies x “ x̂dpxq.

After knowing the result of the simultaneous bargaining after date T , we can use backward

induction to calculate all offers before date T . In each period, the proposer will provide an

offer that makes the other player indifferent between accepting and rejecting. In this way

we have the seller’s proposal xd
1 at date 1, and B1 will accept that offer immediately. As

a result, the seller will provide an offer of xd
2 “ x̂dpxd

1q at date T , and buyer 2 accepts it

immediately.

To see the story behind the algebra above, in Table 1-3 we present the numerical examples

with demand q “ 2´q1 ´q2, δ “ 0.9, two different utility functions, and four different values
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upxq “ 5x ´ x2 upxq “
?
x

Profit of B1 Profit of B2 Output price Profit of B1 Profit of B2 Output price
T “ 5 0.22441 0.239219 1.0372 0.27452 0.24242 0.98370
T “ 7 0.22367 0.239220 1.0380 0.28463 0.24256 0.97399
T “ 9 0.22472 0.239219 1.0368 0.29221 0.24267 0.96682
T “ 11 0.22659 0.239216 1.0349 0.29795 0.24276 0.96145

Table 3: Buyers’ profits each period and prices of output after date T

of T . Each T corresponds to the length of time from the start of the game until entry occurs.

The situation before date T is presented in Table 1, which includes the profit of B1 each

period and the market price of output each period. The input prices each period for two

buyers after date T are presented in Table 2. The equilibrium output prices, plus buyers’

profits each period after date T are presented in Table 3.

With the IARA utility example (upxq “ 5x´x2), there is a second-mover advantage, but

with the DARA utility example (upxq “
?
x), there is a first-mover advantage. Moreover,

with two assumed utility functions in 3 tables, x̂dpxq is increasing.

We can see that with downstream interaction between buyers, the first price is more likely

to boost the second price. In the main model, not like here, the second price is increasing

with upxq “
?
x and decreasing with upxq “ 5x ´ x2.

According to Table 3, a larger arrival date T can be in favor of B1 depending on up.q.

The setup of this game corresponds to a classic problem in industrial organization. Peri-

ods before T constitute a pre-entry span of time. Date T commences the post-entry phase.

We are concerned with the influence of future entry on the current conduct of a monopolist.

For years, the literature on limit pricing assumes that future entry would discipline pre-

entry prices because the incumbent monopolist would wish to convince an entrant that entry

is not likely to be profitable.

This informal argument was never entirely convincing, in a world with complete infor-

mation. With complete information, the entrant can work out for itself what its post-entry

profit will be. Why would the pre-entry quantities matter, then? Milgrom and Roberts

(1982) formalized a model in which the incumbent has superior information about its own

marginal cost. In the Milgrom-Roberts context, the potential entrant has a prior over possi-

24



ble marginal costs of the incumbent. In this setting, the pre-merger price can play a role in

signaling the incumbent’s costs to the entrant. Without the signaling motive, the possibility

of entry would not affect an incumbent’s price.

A bargaining setting points to a very different conclusion. See Tables 1-3. In these tables,

the first buyer has a downstream monopoly up until period T. At that point, entry occurs

with certainty. Each firm knows the costs of the other, and both know the demand curve.

Once entry occurs, if the seller’s utility function is the DARA function, the entrant pays

a lower input price, the longer T was prior to its entry. Entry causes the first buyer’s profit

to fall, and the downstream equilibrium output price to fall. Because the first buyer pays

less than the second, once entry takes place, its profits are higher than those of the entrant.

These results are quite different from what one would expect if input prices were set

according to a TIOLI process. In such a case, the magnitude of T would not affect pricing.

Here, it does. Our results also differ from the results in sequential NBS, described by Horn

and Wolinsky (1988).

It is also worth noticing that this model could not be set up in a sequential NBS model.

Such a model has no place for discounting, or varying the time until entry.

5 Concluding remarks

In this paper, we have extended the Rubenstein AO framework to settings in which

different bargaining processes are interdependent. In order to cause one bargain to affect the

outcome of another bargain, we have assumed that the seller’s utility function is concave in

total payments made to the seller.

Propositions 2 describe the equilibrium in which a seller bargains with one buyer before

bargaining with another. The equilibrium can exhibit a number of patterns, depending on

the seller’s utility function.

For example, the second of two sequential bargains to be concluded can lead to either a

higher or lower price than the first. Two buyers may pay different prices, even though they

are identical. From the standpoint of the seller, sequential bargaining with two buyers can

be more or less profitable than bargaining with both simultaneously.
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The variety of results stems entirely from assuming that the seller has a nonlinear utility

function. If it is linear, then our results coincide with those of Rubenstein.

The usual relationship between AO and NBS exists in sequential bargaining but in a

limited way. At each bargaining stage, as the discount factor goes to 1, the bargain at that

stage resembles the one that would occur with NBS. However, there is no equivalence across

bargaining stages. That is, the limit of the two-stage sequential AO problem is not the same

as the sequential NBS.

Finally, we examine the AO version of the vertical model analyzed by Horn and Wolinsky

(1988) using the NBS. As they do, we find that identical downstream firms end up paying

different prices to an upstream input monopolist. This has implications for the frequent use

of profit margins to identify parameters in empirical work. In empirical bargaining models,

margins are used to identify Nash bargaining parameters, used in counterfactuals. Our work

implies that this approach may lead to biased estimates of these parameters.
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A Appendix

A.1 Bargaining after having an agreement with B1

Here x̂2px1q is determined by (1).

It is easy to check there is no deviation for players because proposals are making the

other players indifferent between accepting and rejecting.
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Next, we prove that the equilibrium is unique.

Suppose in an equilibrium, when the seller proposes, the minimal and maximal payoffs

are ms, Ms respectively; when the buyer proposes, the minimal and maximal payoffs are mb,

Mb respectively.

When the seller proposes, the buyer gets at most Mb in the next period, so the proposal

by the seller is at least 1 ´ δMb. As a result,

ms ě upx1 ` 1 ´ δMbq (7)

Similarly,

Ms ď upx1 ` 1 ´ δmbq (8)

When the buyer proposes, the seller gets at most p1´δqupx1q`δMs by rejecting. Because

the buyer’s proposal is 1 ´ ub, where ub is the buyer’s payoff, we have

upx1 ` 1 ´ mbq ď p1 ´ δqupx1q ` δMs (9)

Similarly,

upx1 ` 1 ´ Mbq ě p1 ´ δqupx1q ` δms (10)

By (7), (8), (9), and (10) we get

upx1 ` 1 ´ mbq ď p1 ´ δqupx1q ` δupx1 ` 1 ´ δmbq (11)

upx1 ` 1 ´ Mbq ě p1 ´ δqupx1q ` δupx1 ` 1 ´ δMbq (12)

Let fpxq “ upx1 ` 1 ´ xq ´ p1 ´ δqupx1q ´ δupx1 ` 1 ´ δxq.

But
dfpxq

dx
“ ´u1

px1 ` 1 ´ xq ` δ2u1
px1 ` 1 ´ δxq

Because u1pxq ą 0 and u2pxq ă 0, dfpxq

dx
ă 0. Moreover, fp0q “ upx1 ` 1q ´ p1 ´ δqupx1q ´

δupx1 ` 1q ą 0; fp1q “ upx1q ´ p1 ´ δqupx1q ´ δupx1 ` 1 ´ δq ă 0. So, there is a unique

solution m˚ s.t. fpxq “ 0 in r0, 1s.
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Then, (11) and (12) become mb ě m˚ and Mb ď m˚, which says mb “ Mb “ m˚.

Plug mb “ Mb “ m˚ into (7) and (8) we get ms “ Ms “ upx1 ` 1 ´ δm˚q.

So, the equilibrium is unique. By letting x̂2px1q “ 1 ´ δm˚ and y “ 1 ´ m˚, we can see

that in this unique equilibrium, the seller’s proposal is our x̂2px1q, satisfying (1).

A.2 Proof of Proposition 1

By (1), we get

upx1 ` 1 ´
1 ´ x̂2px1q

δ
q ´ upx1q “ δpupx1 ` x̂2px1qq ´ upx1qq (13)

Because (13) is satisfied by any x1 P p1 ´ δ, 1q, we can take derivative w.r.t. x1 on both

sides

u1
px1 ` 1 ´

1 ´ x̂2px1q

δ
qp1 `

x̂1
2px1q

δ
q ´ u1

px1q “ δpu1
px1 ` x̂2pxqqp1 ` x̂1

2px1qq ´ u1
px1qq

ô x̂1
2px1q “

δu1px1 ` x̂2pxqq ` p1 ´ δqu1px1q ´ u1px1 ` 1 ´
1´x̂2px1q

δ
q

u1px1`1´
1´x̂2px1q

δ
q

δ
´ δu1px1 ` x̂2pxqq

Because
u1px1`1´

1´x̂2px1q

δ
q

δ
´ δu1px1 ` x̂2pxqq ą 0 by u2pxq ă 0 and δ P p0, 1q, we have

x̂1
2px1q ě 0 ô δu1

px1 ` x̂2pxqq ` p1 ´ δqu1
px1q ´ u1

px1 ` 1 ´
1 ´ x̂2px1q

δ
q ě 0

Moreover,

x̂1
2px1q ą ´

u1px1 ` 1 ´
1´x̂2px1q

δ
q ´ δu1px1 ` x̂2pxqq

u1px1`1´
1´x̂2px1q

δ
q

δ
´ δu1px1 ` x̂2pxqq

ą ´δ

To see the relationship between risk aversion and x̂2p.q, pick x1 ă x1
1.

The price x̂2px1q satisfies

upx1 ` 1 ´
1 ´ x̂2px1q

δ
q “ δupx1 ` x̂2px1qq ` p1 ´ δqupx1q

Firstly, we assume DARA for the seller. Pick x1 ă x1
1.

We keep the lottery of getting x̂2px1q with probability δ and getting 0 with probability
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p1 ´ δq unchanged, and rise the wealth from x1 to x1
1. Then the expected utility from the

lottery is δupx1
1 ` x̂2px1qq ` p1 ´ δqupx1

1q. According to DARA, the new risk premium π is

smaller than the previous risk premium, which is 1´δ
δ

”

1 ´ p1 ` δqx̂2px1q

ı

. As a result, the

new certainty equivalent on the left-hand side is

x1
1 ` δx̂2px1q ´ π ą x1

1 ` δx̂2px1q ´
1 ´ δ

δ

”

1 ´ p1 ` δqx̂2px1q

ı

“ x1
1 ` 1 ´

1 ´ x̂2px1q

δ

Thus, we have The price x̂2px1q satisfies

upx1
1 ` 1 ´

1 ´ x̂2px1q

δ
q ă δupx1

1 ` x̂2px1qq ` p1 ´ δqupx1
1q

Notice that x̂2px
1
1q satisfies

upx1
1 ` 1 ´

1 ´ x̂2px
1
1q

δ
q “ δupx1

1 ` x̂2px1
1qq ` p1 ´ δqupx1

1q

So, we have x̂2px
1
1q ą x̂2px1q, and x̂2p.q is increasing.

A similar process goes for IARA.

A.3 Simultaneous alternating offer bargaining with two buyers

A sufficient condition for the seller’s proposal in equilibrium is

1 ´ x “ δp1 ´ p1 ´
1 ´ x̂2pxq

δ
qq (14)

The equation is that the seller’s proposal makes the buyer indifferent between accept

and reject, where the RHS is the buyer’s payoff after rejecting – after rejection, the buyer

believes that the other buyer will accept this offer x.

(14) gives x “ x̂2pxq. Notice that there must be a solution for this equation in r1 ´ δ, 1s,

because 1 ´ δ ď x̂2p1 ´ δq and 1 ě x̂2p1q.

Claim 1 In an equilibrium of this continuation game, the seller will not provide two offers

that induce one acceptance and one rejection.
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Proof. Suppose there is an equilibrium such that the seller provides two offers that induce

one acceptance and one rejection at date t, denote the price of the acceptance offer as s1.

The unique equilibrium starting at date t ` 1 is the buyer proposes 1 ´
1´x̂2ps1q

δ
, and

the seller proposes x̂2ps1q. Clearly, the seller’s on-path payoff at date t will be p1 ´ δqp1 `

δqups1q ` δ2ups1 ` x̂2ps1qq.

However, if the seller deviates from the rejection offer at date t to the price x̂2ps1q, the

buyer will accept this offer. Thus, this off-path payoff of the seller at date t is ups1 ` x̂2ps1qq,

which is higher than the on-path payoff. As a result, there is a profitable deviation for the

seller, which is a contradiction.

So, we only need to consider cases where the seller provides offers such that both buyers

will accept.

In this case, by a similar reason in the Rubinstein bargaining, the equation (14) charac-

terizes an equilibrium proposal.

The equation is that the seller’s proposal makes the buyer indifferent between accept and

reject, where the RHS is the buyer’s payoff after rejecting – the buyer believes that the other

buyer will accept this offer x.

The equation directly gives x “ x̂2pxq. Notice that there must be an equilibrium for this

equation in r1 ´ δ, 1s, because 1 ´ δ ď x̂2p1 ´ δq and 1 ě x̂2p1q.

The above presents a symmetric equilibrium. And the symmetric equilibrium is unique

if and only if x̂2pxq “ x has a unique solution.

We now exclude the asymmetric equilibrium, i.e., the seller proposes differently to two

buyers.

Suppose the asymmetric equilibrium exists, and the seller proposes x1 and x2 to two

buyers, where x1 ‰ x2. Then for the same reason as above, they satisfy

$

&

%

x1 “ x̂2px2q

x2 “ x̂2px1q

(15)

Suppose there is an asymmetric equilibrium where the seller proposes x1 and x2 to two

buyers (w.l.o.g. x1 ă x2q, then we must have px1, x2q and px2, x1q on the graph of x̂2pxq.
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But as proof in A.2, f 1pxq ą ´δ, we have x̂2px2q ą x̂2px1q ´ δpx2 ´x1q ą x2 ´ px2 ´x1q “ x1,

contradicting x̂2px2q “ x1, so there is no asymmetric equilibrium.

Now we can conclude that the equilibrium determined by (14) is unique when x̂2pxq has

a unique fixed point.

A.4 Limit results

Let first prove the easier case, where δ Ñ 1 and the number of periods before arrival T

remains unchanged, i.e., Proposition 4.

Proof. Consider the continuation game starting at T where the seller does not reach an

agreement with B1. Recall the equilibrium condition for this continuation game (14), for the

seller’s offer at the limit δ Ñ 1, it solves

x “ lim
δÑ1

x̂2pxq

Notice that x̂2pxq satisfies (13) at any δ P p0, 1q, so we can take derivative of both sides

of (13) w.r.t. δ:

u1
px1`1´

1 ´ x̂2px1q

δ
q

dx̂2px1q

dδ
δ ` p1 ´ x̂2px1qq

δ2
“ upx1`x̂2px1qq´upx1q`δu1

px1`x̂2px1qq
dx̂2px1q

dδ

Send δ to 1, we get:

u1
px1 ` lim

δÑ1
x̂2px1qqp1 ´ lim

δÑ1
x̂2px1qq “ upx1 ` lim

δÑ1
x̂2px1qq ´ upx1q (16)

Notice that limδÑ1 x̂2px1q satisfying (16) means:

lim
δÑ1

x̂2px1q “ argmax
s

pupx1 ` sq ´ upx1qqp1 ´ sq

So, the solution to x “ limδÑ1 x̂2pxq solves:

$

’

&

’

%

x “ argmax
s

pupA ` sq ´ upAqqp1 ´ sq

x “ A
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Denote the solution as z˚. The limit outcome of the continuation game starting at T where

the seller does not reach an agreement with B1 is that the seller proposes z
˚ to both buyers,

and buyers accept the offers.

As for the backward induction at date t ă T , denote the offered prices at date t and t`1

are xt, xt`1 respectively. If the seller is the proposer, xt and xt`1 satisfy:

1 ´ xt “ δp1 ´ xt`1q (17)

if B1 is the proposer, xt and xt`1 satisfy:

p1´δT´t
qupxtq`δT´tupxt` x̂2pxtqq “ δpp1´δT´t´1

qupxt`1q`δT´t´1upxt`1` x̂2pxt`1qqq (18)

As δ goes to 1, both (17) and (18) give us xt “ xt`1.

Thus, at the limit of δ Ñ 1, we have that the seller proposes a price of z˚ at date 1, and

proposes a price of limδÑ1 x̂2pz˚q “ z˚ at date T . Both the offers are accepted immediately.

Now we see that the limit payoff of the model is the simultaneous NBS, where both

buyers pay z˚ to the seller:

p1 ´ δT qupx1q ` δTupx1 ` x̂2px1qq Ñ upz˚
` lim

δÑ1
x̂2pz

˚
qq “ up2z˚

q, as δ Ñ 1

Then we look at the limit of the intervals going to zero while the time before arrival

remains unchanged. In this process, the number of periods before B2 arrives goes to infinite.

As for the simultaneous AO bargaining after time T , by the same reason as Proposition

4, is the solution to (6).

We still need to figure out what the backward induction does at the limit.

Let pt be the proposal made at time t. If pt is the proposal made by the seller, then it is

making the buyer indifferent

1 ´ pt “ e´r∆
p1 ´ pt`∆q (19)
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And pt`∆, the buyer’s proposal, is making the seller indifferent

p1 ´ e´rpT´t´∆q
quppt`∆q ` e´rpT´t´∆qu

`

pt`∆ ` x̂2ppt`∆q
˘

“ pe´r∆
´ e´rpT´t´∆q

quppt`2∆q ` e´rpT´t´∆qu
`

pt`2∆ ` x̂2ppt`2∆q
˘

(20)

We can rewrite (20) as

p1 ´ e´r∆
quppt`2∆q

“

”

p1 ´ e´rpT´t´∆q
quppt`2∆q ` e´rpT´t´∆qu

`

pt`2∆ ` x̂2ppt`2∆q
˘

ı

´

”

p1 ´ e´rpT´t´∆q
quppt`∆q ` e´rpT´t´∆qu

`

pt`∆ ` x̂2ppt`∆q
˘

ı

(21)

The RHS of (21) is

ppt`2∆ ´ pt`∆q

”

p1 ´ e´rpT´t´∆q
qu1

ppt`ϵq ` e´rpT´t´∆qu1
`

pt`ϵ ` x̂2ppt`ϵq
˘`

1 ` x̂1
2ppt`ϵq

˘

ı

where pt`ϵ is between pt`∆ and pt`2∆.

Notice that by (19), pt`2∆ ´pt`∆ “ pt`2∆ ´1`er∆p1´ptq “ pt`2∆ ´pt `per∆ ´1qp1´ptq

Thus, (21) is

p1´e´r∆
quppt`2∆q

“

”

pt`2∆ ´ pt ` per∆ ´ 1qp1 ´ ptq
ı

¨

”

p1 ´ e´rpT´t´∆q
qu1

ppt`ϵq ` e´rpT´t´∆qu1
`

pt`ϵ ` x̂2ppt`ϵq
˘`

1 ` x̂1
2ppt`ϵq

˘

ı

(22)

Divide both sides of (22) and send ∆ to 0 we get

rupptq “ p2p1
t ` rp1 ´ ptqq

”

p1 ´ e´rpT´tq
qu1

pptq ` e´rpT´tqu1
`

pt ` lim
∆ñ0

x̂2pptq
˘`

1 ` lim
∆ñ0

x̂1
2pptq

˘

ı

(23)

This equation and pT “ z˚ lead to an asymmetric result after backward induction.
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A.5 Proof for x˚
1 ă xU with IARA

According to Lemma 1, when the seller has IARA, x̂2pxq is decreasing.

We know the outcome of the continuation game after T where the seller does not have

an agreement with B1 is the flow price x˚. Denoting the proposed flow price in date t as xt,

we have the following lemma.

Lemma 1 If the seller has IARA, xT´2 ă xb.

Proof. Because T is odd, the backward induction gives us xT´1 “ 1 ´
1´xT´2

δ
. So, we need

to show 1 ´
1´xb

δ
ą xT´1 to prove the claim.

Notice that x˚ “ x̂2px
˚q, xb “ x̂2p0q, and x̂2pxq decreasing. Thus, we have xb ą x˚.

From xT´1 “ 1 ´
1´xT´2

δ
, then if 1 ´ 1´x˚

1´δ
ą xT´1, we have x˚ ą xT´2. From xb ą x˚ we

will have the result.

By the backward induction, xT´1 satisfies

p1 ´ δqupxT´1q ` δupxT´1 ` x̂2pxT´1qq “ δup2x˚
q (24)

It is easy to see the LHS of (24) is increasing in xT´1, so we only need to show

p1 ´ δqup1 ´
1 ´ x˚

δ
q ` δup1 ´

1 ´ x˚

δ
` x̂2p1 ´

1 ´ x˚

δ
qq ą δup2x˚

q (25)

to prove the lemma.

According to x˚ “ x̂2px
˚q, x˚ satisfies

upx˚
` 1 ´

1 ´ x˚

δ
q “ p1 ´ δqupx˚

q ` δup2x˚
q

So (25) is equivalent to

p1´ δqrup1´
1 ´ x˚

δ
q `upx˚

qs ` δup1´
1 ´ x˚

δ
` x̂2p1´

1 ´ x˚

δ
qq ą upx˚

` 1´
1 ´ x˚

δ
q (26)

Because x̂2pxq is decreasing, x̂2p1´ 1´x˚

δ
q ą x̂2px

˚q “ x˚ ñ up1´ 1´x˚

δ
` x̂2p1´ 1´x˚

δ
qq ą

up1 ´ 1´x˚

δ
` x˚q. This proves x˚ ą xT´2.
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Moreover, by the concavity of upxq, up1 ´ 1´x˚

δ
q ` upx˚q ą up1 ´ 1´x˚

δ
` x˚q

Because xb ą x˚, (26) holds and xb ą xT´2.

Lemma 2 For any odd number τ ă T :

p1´δτ qup1´
1 ´ xb

δ
q`δτup1´

1 ´ xb

δ
`x̂2p1´

1 ´ xb

δ
qq ě pδ´δτ qupxbq`δτupxb`x̂2pxbqq (27)

Proof. According to the equilibrium condition of the unaffected bargaining, (27) is equiva-

lent to

p1 ´ δτ qδupxbq ` δτup1 ´
1 ´ xb

δ
` x̂2p1 ´

1 ´ xb

δ
qq ě pδ ´ δτ qupxbq ` δτupxb ` x̂2pxbqq

ô δupxbqpδτ´1
´ δτ q ` δτup1 ´

1 ´ xb

δ
` x̂2p1 ´

1 ´ xb

δ
qq ě δτupxb ` x̂2pxbqq

ô p1 ´ δqupxbq ` up1 ´
1 ´ xb

δ
` x̂2p1 ´

1 ´ xb

δ
qq ě upxb ` x̂2pxbqq

ô up1 ´
1 ´ xb

δ
` x̂2p1 ´

1 ´ xb

δ
qq ´ up1 ´

1 ´ xb

δ
q ě upxb ` x̂2pxbqq ´ upxbq

ô upxbq ´ up1 ´
1 ´ xb

δ
q ě upxb ` x̂2pxbqq ´ up1 ´

1 ´ xb

δ
` x̂2p1 ´

1 ´ xb

δ
qq (28)

By the concavity of upxq,

RHS of p28q ă r
1 ´ δ

δ
p1 ´ xbq ` x̂2pxbq ´ x̂2p1 ´

1 ´ xb

δ
qsu1

p1 ´
1 ´ xb

δ
` x̂2p1 ´

1 ´ xb

δ
qq

LHS of p28q ą
1 ´ δ

δ
p1 ´ xbqu

1
pxbq

But 1´δ
δ

p1 ´ xbq ă 1 ´ δ ă p2p1 ´
1´xb

δ
q ñ xb ă 1 ´

1´xb

δ
` x̂2p1 ´

1´xb

δ
q.

ñ u1
pxbq ą u1

p1 ´
1 ´ xb

δ
` x̂2p1 ´

1 ´ xb

δ
qq ą 0

Moreover, because x̂2pxq is decreasing,

1 ´ δ

δ
p1 ´ xbq ` x̂2pxbq ´ x̂2p1 ´

1 ´ xb

δ
q ă

1 ´ δ

δ
p1 ´ xbq
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Thus, (28) holds.

Lemma 3 If the seller has IARA, for some odd number t ă T , if xt ă xb, then xt´2 ă xb.

Proof. Let us look at an xt ă xb where t is odd and t ă T . The backward induction implies

p1 ´ δT´t`1
qupxt´1q ` δT´t`1upxt´1 ` x̂2pxt´1qq “ pδ ´ δT´t`1

qupxtq ` δT´t`1upxt ` p2 ˚ pxtqq

Due to xt ă xb and Lemma 2, we have

pδ ´ δT´t`1
qupxtq ` δT´t`1upxt ` x̂2pxtqq

ăpδ ´ δT´t`1
qupxbq ` δT´t`1upxb ` x̂2pxbqq

ďp1 ´ δT´t`1
qup1 ´

1 ´ xb

δ
q ` δT´t`1up1 ´

1 ´ xb

δ
` x̂2p1 ´

1 ´ xb

δ
qq

Thus, xt´1 ă 1 ´
1´xb

δ
. But xt´2 “ 1 ´ δp1 ´ xt´1q by backward induction, so xt´2 ă xb.

According to Lemma 1 and Lemma 3, if the seller is not prudent, for any odd number

t ă T , we have xt ă xb, which means x1 ă xb.

Moreover, because x̂2pxq is decreasing with a non-prudent seller, x̂2px1q ă x̂2p0q “ xb.

As a result, both flow prices are smaller than the flow price in the AO benchmark, and thus

the seller is worse off than having two separate AO bargaining.
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